html, body, form { margin: 0; padding: 0; width: 100%; } #calculate { position: relative; width: 177px; height: 110px; background: transparent url(/images/alphabox/embed_functions_inside.gif) no-repeat scroll 0 0; } #i { position: relative; left: 18px; top: 44px; width: 133px; border: 0 none; outline: 0; font-size: 11px; } #eq { width: 9px; height: 10px; background: transparent; position: absolute; top: 47px; right: 18px; cursor: pointer; }

 SinIntegral

 http://functions.wolfram.com/06.37.21.0044.01

 Input Form

 Integrate[z^3 Cosh[b z] SinIntegral[a z], z] == (-(1/(4 b^4))) (I (-((1/(a^2 + b^2)^3) (6 (a^2 + b^2)^3 (ExpIntegralEi[((-I) a + b) z] - ExpIntegralEi[(I a + b) z] + ExpIntegralEi[(-I) a z - b z] - ExpIntegralEi[I a z - b z]) + 4 I b^2 Sin[a z] ((3 a^4 + 6 a^2 b^2 + 11 b^4 + b^2 (a^2 + b^2)^2 z^2) Cosh[b z] - b (a^2 + b^2) (a^2 + 5 b^2) z Sinh[b z]) + 4 I b Cos[a z] (a b (a^2 + b^2) (3 a^2 + 7 b^2) z Cosh[b z] - a (2 (3 a^4 + 8 a^2 b^2 + 9 b^4) + b^2 (a^2 + b^2)^2 z^2) Sinh[b z]))) - 2 I (Gamma[4, (-b) z] + Gamma[4, b z]) SinIntegral[a z]))

 Standard Form

 Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[SuperscriptBox["z", "3"], " ", RowBox[List["Cosh", "[", RowBox[List["b", " ", "z"]], "]"]], RowBox[List["SinIntegral", "[", RowBox[List["a", " ", "z"]], "]"]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[RowBox[List["-", FractionBox["1", RowBox[List["4", " ", SuperscriptBox["b", "4"]]]]]], RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List[FractionBox["1", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "+", SuperscriptBox["b", "2"]]], ")"]], "3"]], RowBox[List["(", RowBox[List[RowBox[List["6", " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "+", SuperscriptBox["b", "2"]]], ")"]], "3"], " ", RowBox[List["(", RowBox[List[RowBox[List["ExpIntegralEi", "[", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a"]], "+", "b"]], ")"]], " ", "z"]], "]"]], "-", RowBox[List["ExpIntegralEi", "[", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a"]], "+", "b"]], ")"]], " ", "z"]], "]"]], "+", RowBox[List["ExpIntegralEi", "[", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a", " ", "z"]], "-", RowBox[List["b", " ", "z"]]]], "]"]], "-", RowBox[List["ExpIntegralEi", "[", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a", " ", "z"]], "-", RowBox[List["b", " ", "z"]]]], "]"]]]], ")"]]]], "+", RowBox[List["4", " ", "\[ImaginaryI]", " ", SuperscriptBox["b", "2"], " ", RowBox[List["Sin", "[", RowBox[List["a", " ", "z"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["3", " ", SuperscriptBox["a", "4"]]], "+", RowBox[List["6", " ", SuperscriptBox["a", "2"], " ", SuperscriptBox["b", "2"]]], "+", RowBox[List["11", " ", SuperscriptBox["b", "4"]]], "+", RowBox[List[SuperscriptBox["b", "2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "+", SuperscriptBox["b", "2"]]], ")"]], "2"], " ", SuperscriptBox["z", "2"]]]]], ")"]], " ", RowBox[List["Cosh", "[", RowBox[List["b", " ", "z"]], "]"]]]], "-", RowBox[List["b", " ", RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "+", SuperscriptBox["b", "2"]]], ")"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "+", RowBox[List["5", " ", SuperscriptBox["b", "2"]]]]], ")"]], " ", "z", " ", RowBox[List["Sinh", "[", RowBox[List["b", " ", "z"]], "]"]]]]]], ")"]]]], "+", RowBox[List["4", " ", "\[ImaginaryI]", " ", "b", " ", RowBox[List["Cos", "[", RowBox[List["a", " ", "z"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["a", " ", "b", " ", RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "+", SuperscriptBox["b", "2"]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["3", " ", SuperscriptBox["a", "2"]]], "+", RowBox[List["7", " ", SuperscriptBox["b", "2"]]]]], ")"]], " ", "z", " ", RowBox[List["Cosh", "[", RowBox[List["b", " ", "z"]], "]"]]]], "-", RowBox[List["a", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["3", " ", SuperscriptBox["a", "4"]]], "+", RowBox[List["8", " ", SuperscriptBox["a", "2"], " ", SuperscriptBox["b", "2"]]], "+", RowBox[List["9", " ", SuperscriptBox["b", "4"]]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["b", "2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "+", SuperscriptBox["b", "2"]]], ")"]], "2"], " ", SuperscriptBox["z", "2"]]]]], ")"]], " ", RowBox[List["Sinh", "[", RowBox[List["b", " ", "z"]], "]"]]]]]], ")"]]]]]], ")"]]]]]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["Gamma", "[", RowBox[List["4", ",", RowBox[List[RowBox[List["-", "b"]], " ", "z"]]]], "]"]], "+", RowBox[List["Gamma", "[", RowBox[List["4", ",", RowBox[List["b", " ", "z"]]]], "]"]]]], ")"]], " ", RowBox[List["SinIntegral", "[", RowBox[List["a", " ", "z"]], "]"]]]]]], ")"]]]], ")"]]]]]]]]

 MathML Form

 z 3 cosh ( b z ) Si ( a z ) z - 1 4 b 4 ( ( - 1 ( a 2 + b 2 ) 3 ( 6 ( Ei ( ( b - a ) z ) - Ei ( ( b + a ) z ) + Ei ( - b z + a ( - ) z ) - Ei ( a z - b z ) ) ( a 2 + b 2 ) 3 + 4 b 2 sin ( a z ) ( ( 3 a 4 + 6 b 2 a 2 + 11 b 4 + b 2 ( a 2 + b 2 ) 2 z 2 ) cosh ( b z ) - b ( a 2 + b 2 ) ( a 2 + 5 b 2 ) z sinh ( b z ) ) + 4 b cos ( a z ) ( a b ( a 2 + b 2 ) ( 3 a 2 + 7 b 2 ) z cosh ( b z ) - a ( b 2 ( a 2 + b 2 ) 2 z 2 + 2 ( 3 a 4 + 8 b 2 a 2 + 9 b 4 ) ) sinh ( b z ) ) ) - 2 ( Γ ( 4 , - b z ) + Γ ( 4 , b z ) ) Si ( a z ) ) ) z z 3 b z SinIntegral a z -1 1 4 b 4 -1 -1 1 a 2 b 2 3 -1 6 ExpIntegralEi b -1 a z -1 ExpIntegralEi b a z ExpIntegralEi -1 b z a -1 z -1 ExpIntegralEi a z -1 b z a 2 b 2 3 4 b 2 a z 3 a 4 6 b 2 a 2 11 b 4 b 2 a 2 b 2 2 z 2 b z -1 b a 2 b 2 a 2 5 b 2 z b z 4 b a z a b a 2 b 2 3 a 2 7 b 2 z b z -1 a b 2 a 2 b 2 2 z 2 2 3 a 4 8 b 2 a 2 9 b 4 b z -1 2 Gamma 4 -1 b z Gamma 4 b z SinIntegral a z [/itex]

 Rule Form

 Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List[SuperscriptBox["z_", "3"], " ", RowBox[List["Cosh", "[", RowBox[List["b_", " ", "z_"]], "]"]], " ", RowBox[List["SinIntegral", "[", RowBox[List["a_", " ", "z_"]], "]"]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List["-", FractionBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["-", FractionBox[RowBox[List[RowBox[List["6", " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "+", SuperscriptBox["b", "2"]]], ")"]], "3"], " ", RowBox[List["(", RowBox[List[RowBox[List["ExpIntegralEi", "[", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a"]], "+", "b"]], ")"]], " ", "z"]], "]"]], "-", RowBox[List["ExpIntegralEi", "[", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a"]], "+", "b"]], ")"]], " ", "z"]], "]"]], "+", RowBox[List["ExpIntegralEi", "[", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a", " ", "z"]], "-", RowBox[List["b", " ", "z"]]]], "]"]], "-", RowBox[List["ExpIntegralEi", "[", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a", " ", "z"]], "-", RowBox[List["b", " ", "z"]]]], "]"]]]], ")"]]]], "+", RowBox[List["4", " ", "\[ImaginaryI]", " ", SuperscriptBox["b", "2"], " ", RowBox[List["Sin", "[", RowBox[List["a", " ", "z"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["3", " ", SuperscriptBox["a", "4"]]], "+", RowBox[List["6", " ", SuperscriptBox["a", "2"], " ", SuperscriptBox["b", "2"]]], "+", RowBox[List["11", " ", SuperscriptBox["b", "4"]]], "+", RowBox[List[SuperscriptBox["b", "2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "+", SuperscriptBox["b", "2"]]], ")"]], "2"], " ", SuperscriptBox["z", "2"]]]]], ")"]], " ", RowBox[List["Cosh", "[", RowBox[List["b", " ", "z"]], "]"]]]], "-", RowBox[List["b", " ", RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "+", SuperscriptBox["b", "2"]]], ")"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "+", RowBox[List["5", " ", SuperscriptBox["b", "2"]]]]], ")"]], " ", "z", " ", RowBox[List["Sinh", "[", RowBox[List["b", " ", "z"]], "]"]]]]]], ")"]]]], "+", RowBox[List["4", " ", "\[ImaginaryI]", " ", "b", " ", RowBox[List["Cos", "[", RowBox[List["a", " ", "z"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["a", " ", "b", " ", RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "+", SuperscriptBox["b", "2"]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["3", " ", SuperscriptBox["a", "2"]]], "+", RowBox[List["7", " ", SuperscriptBox["b", "2"]]]]], ")"]], " ", "z", " ", RowBox[List["Cosh", "[", RowBox[List["b", " ", "z"]], "]"]]]], "-", RowBox[List["a", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["3", " ", SuperscriptBox["a", "4"]]], "+", RowBox[List["8", " ", SuperscriptBox["a", "2"], " ", SuperscriptBox["b", "2"]]], "+", RowBox[List["9", " ", SuperscriptBox["b", "4"]]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["b", "2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "+", SuperscriptBox["b", "2"]]], ")"]], "2"], " ", SuperscriptBox["z", "2"]]]]], ")"]], " ", RowBox[List["Sinh", "[", RowBox[List["b", " ", "z"]], "]"]]]]]], ")"]]]]]], SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "+", SuperscriptBox["b", "2"]]], ")"]], "3"]]]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["Gamma", "[", RowBox[List["4", ",", RowBox[List[RowBox[List["-", "b"]], " ", "z"]]]], "]"]], "+", RowBox[List["Gamma", "[", RowBox[List["4", ",", RowBox[List["b", " ", "z"]]]], "]"]]]], ")"]], " ", RowBox[List["SinIntegral", "[", RowBox[List["a", " ", "z"]], "]"]]]]]], ")"]]]], RowBox[List["4", " ", SuperscriptBox["b", "4"]]]]]]]]]]

 Date Added to functions.wolfram.com (modification date)

 2001-10-29

© 1998-2013 Wolfram Research, Inc.