Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











Subfactorial






Mathematica Notation

Traditional Notation









Gamma, Beta, Erf > Subfactorial[n] > Specific values > Specialized values





http://functions.wolfram.com/06.42.03.0009.01









  


  










Input Form





Subfactorial[n - 1/2] == (1/E) Erfc[I] Gamma[1/2 + n] + I Sum[(-1)^k/Pochhammer[1/2 + n, 1 + k - n], {k, 0, -1 + n}] - I Sum[(-1)^k/Pochhammer[1/2 + n, 1 + k - n], {k, n, -1}] /; Element[n, Integers]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["Subfactorial", "[", RowBox[List["n", "-", FractionBox["1", "2"]]], "]"]], "\[Equal]", RowBox[List[RowBox[List[FractionBox["1", "\[ExponentialE]"], RowBox[List["Erfc", "[", "\[ImaginaryI]", "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "2"], "+", "n"]], "]"]]]], "+", RowBox[List["\[ImaginaryI]", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List[RowBox[List["-", "1"]], "+", "n"]]], FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], "+", "n"]], ",", RowBox[List["1", "+", "k", "-", "n"]]]], "]"]]]]]]], "-", " ", RowBox[List["\[ImaginaryI]", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "n"]], RowBox[List["-", "1"]]], FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], "+", "n"]], ",", RowBox[List["1", "+", "k", "-", "n"]]]], "]"]]]]]]]]]]], "/;", " ", RowBox[List["n", "\[Element]", "Integers"]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mi> Subfactorial </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> &#63449; </mo> <mrow> <mfrac> <mrow> <mrow> <mi> erfc </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> &#8520; </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mi> &#8519; </mi> </mfrac> <mo> + </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> k </mi> <mo> - </mo> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, RowBox[List[&quot;n&quot;, &quot;+&quot;, FractionBox[&quot;1&quot;, &quot;2&quot;]]], &quot;)&quot;]], RowBox[List[&quot;k&quot;, &quot;-&quot;, &quot;n&quot;, &quot;+&quot;, &quot;1&quot;]]], Pochhammer] </annotation> </semantics> </mfrac> </mrow> </mrow> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mi> n </mi> </mrow> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> k </mi> <mo> - </mo> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, RowBox[List[&quot;n&quot;, &quot;+&quot;, FractionBox[&quot;1&quot;, &quot;2&quot;]]], &quot;)&quot;]], RowBox[List[&quot;k&quot;, &quot;-&quot;, &quot;n&quot;, &quot;+&quot;, &quot;1&quot;]]], Pochhammer] </annotation> </semantics> </mfrac> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> n </mi> <mo> &#8712; </mo> <semantics> <mi> &#8484; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubleStruckCapitalZ]&quot;, Function[List[], Integers]] </annotation> </semantics> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> Subfactorial </ci> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <ci> Erfc </ci> <imaginaryi /> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> n </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <exponentiale /> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <imaginaryi /> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </uplimit> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <apply> <power /> <apply> <ci> Pochhammer </ci> <apply> <plus /> <ci> n </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <ci> k </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <ci> n </ci> </lowlimit> <uplimit> <cn type='integer'> -1 </cn> </uplimit> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <apply> <power /> <apply> <ci> Pochhammer </ci> <apply> <plus /> <ci> n </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <ci> k </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <in /> <ci> n </ci> <integers /> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Subfactorial", "[", RowBox[List["n_", "-", FractionBox["1", "2"]]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[FractionBox[RowBox[List[RowBox[List["Erfc", "[", "\[ImaginaryI]", "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "2"], "+", "n"]], "]"]]]], "\[ExponentialE]"], "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List[RowBox[List["-", "1"]], "+", "n"]]], FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], "+", "n"]], ",", RowBox[List["1", "+", "k", "-", "n"]]]], "]"]]]]]]], "-", RowBox[List["\[ImaginaryI]", " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "n"]], RowBox[List["-", "1"]]], FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], "+", "n"]], ",", RowBox[List["1", "+", "k", "-", "n"]]]], "]"]]]]]]]]], "/;", RowBox[List["n", "\[Element]", "Integers"]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02





© 1998- Wolfram Research, Inc.