Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











Subfactorial






Mathematica Notation

Traditional Notation









Gamma, Beta, Erf > Subfactorial[n] > Differentiation > Low-order differentiation





http://functions.wolfram.com/06.42.20.0004.01









  


  










Input Form





D[Subfactorial[z], {z, 2}] == (1/E) ((-Pi^2) Gamma[1 + z, -1] + ((2 (-1)^z)/(1 + z)^3) ((-I) Pi (1 + z) HypergeometricPFQ[{1 + z, 1 + z}, {2 + z, 2 + z}, 1] + HypergeometricPFQ[{1 + z, 1 + z, 1 + z}, {2 + z, 2 + z, 2 + z}, 1]) + Gamma[1 + z] (Pi^2 + PolyGamma[1 + z]^2 + PolyGamma[1, 1 + z]))










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[SubscriptBox["\[PartialD]", RowBox[List["{", RowBox[List["z", ",", "2"]], "}"]]], RowBox[List["Subfactorial", "[", "z", "]"]]]], "\[Equal]", RowBox[List[FractionBox["1", "\[ExponentialE]"], RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", SuperscriptBox["\[Pi]", "2"]]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List["1", "+", "z"]], ",", RowBox[List["-", "1"]]]], "]"]]]], "+", RowBox[List[FractionBox[RowBox[List["2", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "z"]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "z"]], ")"]], "3"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "\[Pi]", " ", RowBox[List["(", RowBox[List["1", "+", "z"]], ")"]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["1", "+", "z"]], ",", RowBox[List["1", "+", "z"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["2", "+", "z"]], ",", RowBox[List["2", "+", "z"]]]], "}"]], ",", "1"]], "]"]]]], "+", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["1", "+", "z"]], ",", RowBox[List["1", "+", "z"]], ",", RowBox[List["1", "+", "z"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["2", "+", "z"]], ",", RowBox[List["2", "+", "z"]], ",", RowBox[List["2", "+", "z"]]]], "}"]], ",", "1"]], "]"]]]], ")"]]]], "+", RowBox[List[RowBox[List["Gamma", "[", RowBox[List["1", "+", "z"]], "]"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox["\[Pi]", "2"], "+", SuperscriptBox[RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "z"]], "]"]], "2"], "+", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", RowBox[List["1", "+", "z"]]]], "]"]]]], ")"]]]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mfrac> <mrow> <msup> <mo> &#8706; </mo> <mn> 2 </mn> </msup> <mrow> <mi> Subfactorial </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mrow> <mo> &#8706; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </mfrac> <mo> &#63449; </mo> <mrow> <mfrac> <mn> 1 </mn> <mi> &#8519; </mi> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <msup> <mi> &#960; </mi> <mn> 2 </mn> </msup> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 3 </mn> </msup> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> z </mi> </msup> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 3 </mn> </msub> <msub> <mi> F </mi> <mn> 3 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ; </mo> <mrow> <mrow> <mi> z </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> , </mo> <mrow> <mi> z </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> , </mo> <mrow> <mi> z </mi> <mo> + </mo> <mn> 2 </mn> </mrow> </mrow> <mo> ; </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, &quot;3&quot;], SubscriptBox[&quot;F&quot;, &quot;3&quot;]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List[&quot;z&quot;, &quot;+&quot;, &quot;1&quot;]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;z&quot;, &quot;+&quot;, &quot;1&quot;]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;z&quot;, &quot;+&quot;, &quot;1&quot;]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], &quot;;&quot;, TagBox[TagBox[RowBox[List[TagBox[RowBox[List[&quot;z&quot;, &quot;+&quot;, &quot;2&quot;]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;z&quot;, &quot;+&quot;, &quot;2&quot;]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;z&quot;, &quot;+&quot;, &quot;2&quot;]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], &quot;;&quot;, TagBox[&quot;1&quot;, HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] </annotation> </semantics> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 2 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ; </mo> <mrow> <mrow> <mi> z </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> , </mo> <mrow> <mi> z </mi> <mo> + </mo> <mn> 2 </mn> </mrow> </mrow> <mo> ; </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, &quot;2&quot;], SubscriptBox[&quot;F&quot;, &quot;2&quot;]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List[&quot;z&quot;, &quot;+&quot;, &quot;1&quot;]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;z&quot;, &quot;+&quot;, &quot;1&quot;]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], &quot;;&quot;, TagBox[TagBox[RowBox[List[TagBox[RowBox[List[&quot;z&quot;, &quot;+&quot;, &quot;2&quot;]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;z&quot;, &quot;+&quot;, &quot;2&quot;]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], &quot;;&quot;, TagBox[&quot;1&quot;, HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] </annotation> </semantics> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mi> &#960; </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mrow> <msup> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mrow> <mo> ( </mo> <mn> 1 </mn> <mo> ) </mo> </mrow> </msup> <mo> ( </mo> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <partialdiff /> <bvar> <ci> z </ci> <degree> <cn type='integer'> 2 </cn> </degree> </bvar> <apply> <ci> Subfactorial </ci> <ci> z </ci> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <exponentiale /> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 3 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> </list> <list> <apply> <plus /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </list> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <pi /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> </list> <list> <apply> <plus /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </list> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <plus /> <apply> <power /> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <apply> <ci> PolyGamma </ci> <cn type='integer'> 1 </cn> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List[RowBox[List["{", RowBox[List["z_", ",", "2"]], "}"]]]]], RowBox[List["Subfactorial", "[", "z_", "]"]]]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[RowBox[List[RowBox[List["-", SuperscriptBox["\[Pi]", "2"]]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List["1", "+", "z"]], ",", RowBox[List["-", "1"]]]], "]"]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["2", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "z"]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "\[Pi]", " ", RowBox[List["(", RowBox[List["1", "+", "z"]], ")"]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["1", "+", "z"]], ",", RowBox[List["1", "+", "z"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["2", "+", "z"]], ",", RowBox[List["2", "+", "z"]]]], "}"]], ",", "1"]], "]"]]]], "+", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["1", "+", "z"]], ",", RowBox[List["1", "+", "z"]], ",", RowBox[List["1", "+", "z"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["2", "+", "z"]], ",", RowBox[List["2", "+", "z"]], ",", RowBox[List["2", "+", "z"]]]], "}"]], ",", "1"]], "]"]]]], ")"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "z"]], ")"]], "3"]], "+", RowBox[List[RowBox[List["Gamma", "[", RowBox[List["1", "+", "z"]], "]"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox["\[Pi]", "2"], "+", SuperscriptBox[RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "z"]], "]"]], "2"], "+", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", RowBox[List["1", "+", "z"]]]], "]"]]]], ")"]]]]]], "\[ExponentialE]"]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02





© 1998- Wolfram Research, Inc.