Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











AppellF1






Mathematica Notation

Traditional Notation









Hypergeometric Functions > AppellF1[a,b1,b2,c,z1,z2] > Specific values > Values at fixed points > For fixed z1,z2





http://functions.wolfram.com/07.36.03.0021.01









  


  










Input Form





AppellF1[1, -(1/2), 1, 3/2 + n, Subscript[z, 1], Subscript[z, 2]] == (1 + 2 n) ((-1)^(n - 1) (1 - Subscript[z, 2])^n Subscript[z, 2]^(-n - 1) Sqrt[(Subscript[z, 2] - Subscript[z, 1])/(Subscript[z, 2] - 1)] ArcTanh[Sqrt[(Subscript[z, 2] - Subscript[z, 1])/(Subscript[z, 2] - 1)]] + (((-1)^n (1 - Subscript[z, 1])^(1 + n))/ (n! (1 - Subscript[z, 2]))) Sum[(((m + 1) 2^(m - 2 n) Subscript[z, 1]^((m + 1)/2 - n) (2 n - m - 2)!)/ (n - m - 1)!) (((Sqrt[Subscript[z, 1]] - Sqrt[(Subscript[z, 2] - Subscript[z, 1])/ (Subscript[z, 2] - 1)])^(-2 - m) + (Sqrt[Subscript[z, 1]] + Sqrt[(Subscript[z, 2] - Subscript[z, 1])/ (Subscript[z, 2] - 1)])^(-2 - m)) ArcTanh[Sqrt[Subscript[z, 1]]] - Sum[((-1)^j/(1 + j)) ((Sqrt[Subscript[z, 1]] - Sqrt[(Subscript[z, 2] - Subscript[z, 1])/ (Subscript[z, 2] - 1)])^(j - m - 1) + (Sqrt[Subscript[z, 1]] + Sqrt[(Subscript[z, 2] - Subscript[z, 1])/ (Subscript[z, 2] - 1)])^(j - m - 1)) Sum[(2^(j - 2 k) (1 - Subscript[z, 1])^(-1 - j + k) Subscript[z, 1]^(j/2 - k) (j - k)!)/((j - 2 k)! k!), {k, 0, j}], {j, 0, m}]), {m, 0, n - 1}])










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["AppellF1", "[", RowBox[List["1", ",", RowBox[List["-", FractionBox["1", "2"]]], ",", "1", ",", RowBox[List[FractionBox["3", "2"], "+", "n"]], ",", SubscriptBox["z", "1"], ",", SubscriptBox["z", "2"]]], "]"]], "\[Equal]", RowBox[List[RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "n"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["n", "-", "1"]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", SubscriptBox["z", "2"]]], ")"]], "n"], " ", SubsuperscriptBox["z", "2", RowBox[List[RowBox[List["-", "n"]], "-", "1"]]], SqrtBox[FractionBox[RowBox[List[SubscriptBox["z", "2"], "-", SubscriptBox["z", "1"]]], RowBox[List[SubscriptBox["z", "2"], "-", "1"]]]], " ", RowBox[List["ArcTanh", "[", SqrtBox[FractionBox[RowBox[List[SubscriptBox["z", "2"], "-", SubscriptBox["z", "1"]]], RowBox[List[SubscriptBox["z", "2"], "-", "1"]]]], "]"]]]], "+", RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "n"], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", SubscriptBox["z", "1"]]], ")"]], RowBox[List["1", "+", "n"]]]]], RowBox[List[RowBox[List["n", "!"]], RowBox[List["(", RowBox[List["1", "-", SubscriptBox["z", "2"]]], ")"]]]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["m", "=", "0"]], RowBox[List["n", "-", "1"]]], RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List["m", "+", "1"]], ")"]], " ", SuperscriptBox["2", RowBox[List["m", "-", RowBox[List["2", " ", "n"]]]]], " ", SubsuperscriptBox["z", "1", RowBox[List[FractionBox[RowBox[List["m", "+", "1"]], "2"], "-", "n"]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", "n"]], "-", "m", "-", "2"]], ")"]], "!"]]]], RowBox[List[RowBox[List["(", RowBox[List["n", "-", "m", "-", "1"]], ")"]], "!"]]], RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[SqrtBox[SubscriptBox["z", "1"]], "-", SqrtBox[FractionBox[RowBox[List[SubscriptBox["z", "2"], "-", SubscriptBox["z", "1"]]], RowBox[List[SubscriptBox["z", "2"], "-", "1"]]]]]], ")"]], RowBox[List[RowBox[List["-", "2"]], "-", "m"]]], "+", SuperscriptBox[RowBox[List["(", RowBox[List[SqrtBox[SubscriptBox["z", "1"]], "+", SqrtBox[FractionBox[RowBox[List[SubscriptBox["z", "2"], "-", SubscriptBox["z", "1"]]], RowBox[List[SubscriptBox["z", "2"], "-", "1"]]]]]], ")"]], RowBox[List[RowBox[List["-", "2"]], "-", "m"]]]]], ")"]], " ", RowBox[List["ArcTanh", "[", SqrtBox[SubscriptBox["z", "1"]], "]"]]]], "-", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "m"], RowBox[List[FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], RowBox[List["1", "+", "j"]]], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[SqrtBox[SubscriptBox["z", "1"]], "-", SqrtBox[FractionBox[RowBox[List[SubscriptBox["z", "2"], "-", SubscriptBox["z", "1"]]], RowBox[List[SubscriptBox["z", "2"], "-", "1"]]]]]], ")"]], RowBox[List["j", "-", "m", "-", "1"]]], "+", SuperscriptBox[RowBox[List["(", RowBox[List[SqrtBox[SubscriptBox["z", "1"]], "+", SqrtBox[FractionBox[RowBox[List[SubscriptBox["z", "2"], "-", SubscriptBox["z", "1"]]], RowBox[List[SubscriptBox["z", "2"], "-", "1"]]]]]], ")"]], RowBox[List["j", "-", "m", "-", "1"]]]]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "j"], FractionBox[RowBox[List[SuperscriptBox["2", RowBox[List["j", "-", RowBox[List["2", "k"]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", SubscriptBox["z", "1"]]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "j", "+", "k"]]], " ", SubsuperscriptBox["z", "1", RowBox[List[FractionBox["j", "2"], "-", "k"]]], " ", RowBox[List[RowBox[List["(", RowBox[List["j", "-", "k"]], ")"]], "!"]]]], RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["j", "-", RowBox[List["2", "k"]]]], ")"]], "!"]], " ", RowBox[List["k", "!"]]]]]]]]]]]]], ")"]]]]]]]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <semantics> <msub> <mi> F </mi> <mn> 1 </mn> </msub> <annotation-xml encoding='MathML-Content'> <ci> AppellF1 </ci> </annotation-xml> </semantics> <mo> ( </mo> <mrow> <mrow> <mn> 1 </mn> <mo> ; </mo> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> </mrow> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> ; </mo> <mrow> <mi> n </mi> <mo> + </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ; </mo> <msub> <mi> z </mi> <mn> 1 </mn> </msub> </mrow> <mo> , </mo> <msub> <mi> z </mi> <mn> 2 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> &#63449; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <msqrt> <mfrac> <mrow> <msub> <mi> z </mi> <mn> 2 </mn> </msub> <mo> - </mo> <msub> <mi> z </mi> <mn> 1 </mn> </msub> </mrow> <mrow> <msub> <mi> z </mi> <mn> 2 </mn> </msub> <mo> - </mo> <mn> 1 </mn> </mrow> </mfrac> </msqrt> <mo> &#8290; </mo> <mrow> <msup> <mi> tanh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msqrt> <mfrac> <mrow> <msub> <mi> z </mi> <mn> 2 </mn> </msub> <mo> - </mo> <msub> <mi> z </mi> <mn> 1 </mn> </msub> </mrow> <mrow> <msub> <mi> z </mi> <mn> 2 </mn> </msub> <mo> - </mo> <mn> 1 </mn> </mrow> </mfrac> </msqrt> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msub> <mi> z </mi> <mn> 2 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mi> n </mi> </msup> <mo> &#8290; </mo> <msubsup> <mi> z </mi> <mn> 2 </mn> <mrow> <mrow> <mo> - </mo> <mi> n </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msubsup> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> n </mi> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msub> <mi> z </mi> <mn> 1 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> </mrow> <mrow> <mrow> <mi> n </mi> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msub> <mi> z </mi> <mn> 2 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> m </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <mrow> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mn> 2 </mn> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> </mrow> </msup> <mo> &#8290; </mo> <msubsup> <mi> z </mi> <mn> 1 </mn> <mrow> <mfrac> <mrow> <mi> m </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> - </mo> <mi> n </mi> </mrow> </msubsup> <mo> &#8290; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> - </mo> <mi> m </mi> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <msqrt> <msub> <mi> z </mi> <mn> 1 </mn> </msub> </msqrt> <mo> - </mo> <msqrt> <mfrac> <mrow> <msub> <mi> z </mi> <mn> 2 </mn> </msub> <mo> - </mo> <msub> <mi> z </mi> <mn> 1 </mn> </msub> </mrow> <mrow> <msub> <mi> z </mi> <mn> 2 </mn> </msub> <mo> - </mo> <mn> 1 </mn> </mrow> </mfrac> </msqrt> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> - </mo> <mi> m </mi> </mrow> <mo> - </mo> <mn> 2 </mn> </mrow> </msup> <mo> + </mo> <msup> <mrow> <mo> ( </mo> <mrow> <msqrt> <mfrac> <mrow> <msub> <mi> z </mi> <mn> 2 </mn> </msub> <mo> - </mo> <msub> <mi> z </mi> <mn> 1 </mn> </msub> </mrow> <mrow> <msub> <mi> z </mi> <mn> 2 </mn> </msub> <mo> - </mo> <mn> 1 </mn> </mrow> </mfrac> </msqrt> <mo> + </mo> <msqrt> <msub> <mi> z </mi> <mn> 1 </mn> </msub> </msqrt> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> - </mo> <mi> m </mi> </mrow> <mo> - </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> tanh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msqrt> <msub> <mi> z </mi> <mn> 1 </mn> </msub> </msqrt> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> m </mi> </munderover> <mrow> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> j </mi> </msup> <mrow> <mi> j </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <msqrt> <msub> <mi> z </mi> <mn> 1 </mn> </msub> </msqrt> <mo> - </mo> <msqrt> <mfrac> <mrow> <msub> <mi> z </mi> <mn> 2 </mn> </msub> <mo> - </mo> <msub> <mi> z </mi> <mn> 1 </mn> </msub> </mrow> <mrow> <msub> <mi> z </mi> <mn> 2 </mn> </msub> <mo> - </mo> <mn> 1 </mn> </mrow> </mfrac> </msqrt> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> j </mi> <mo> - </mo> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> + </mo> <msup> <mrow> <mo> ( </mo> <mrow> <msqrt> <mfrac> <mrow> <msub> <mi> z </mi> <mn> 2 </mn> </msub> <mo> - </mo> <msub> <mi> z </mi> <mn> 1 </mn> </msub> </mrow> <mrow> <msub> <mi> z </mi> <mn> 2 </mn> </msub> <mo> - </mo> <mn> 1 </mn> </mrow> </mfrac> </msqrt> <mo> + </mo> <msqrt> <msub> <mi> z </mi> <mn> 1 </mn> </msub> </msqrt> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> j </mi> <mo> - </mo> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> j </mi> </munderover> <mfrac> <mrow> <msup> <mn> 2 </mn> <mrow> <mi> j </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msub> <mi> z </mi> <mn> 1 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> - </mo> <mi> j </mi> </mrow> <mo> + </mo> <mi> k </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <msubsup> <mi> z </mi> <mn> 1 </mn> <mrow> <mfrac> <mi> j </mi> <mn> 2 </mn> </mfrac> <mo> - </mo> <mi> k </mi> </mrow> </msubsup> <mo> &#8290; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> j </mi> <mo> - </mo> <mi> k </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mrow> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> j </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> </mrow> </mfrac> </mrow> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> AppellF1 </ci> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> 1 </cn> <apply> <plus /> <ci> n </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <arctanh /> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <ci> n </ci> </apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <factorial /> <ci> n </ci> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <sum /> <bvar> <ci> m </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </uplimit> <apply> <times /> <apply> <times /> <apply> <plus /> <ci> m </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <ci> m </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> </apply> <apply> <factorial /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> <cn type='integer'> -2 </cn> </apply> </apply> <apply> <power /> <apply> <factorial /> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> <cn type='integer'> -2 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> <cn type='integer'> -2 </cn> </apply> </apply> </apply> <apply> <arctanh /> <apply> <power /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <sum /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> m </ci> </uplimit> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <apply> <power /> <apply> <plus /> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <plus /> <ci> j </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <plus /> <ci> j </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> j </ci> </uplimit> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> j </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <ci> k </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <apply> <times /> <ci> j </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> </apply> </apply> <apply> <factorial /> <apply> <plus /> <ci> j </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <factorial /> <apply> <plus /> <ci> j </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> <apply> <factorial /> <ci> k </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["AppellF1", "[", RowBox[List["1", ",", RowBox[List["-", FractionBox["1", "2"]]], ",", "1", ",", RowBox[List[FractionBox["3", "2"], "+", "n_"]], ",", SubscriptBox["z_", "1"], ",", SubscriptBox["z_", "2"]]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "n"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["n", "-", "1"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", SubscriptBox["zz", "2"]]], ")"]], "n"], " ", SubsuperscriptBox["zz", "2", RowBox[List[RowBox[List["-", "n"]], "-", "1"]]], " ", SqrtBox[FractionBox[RowBox[List[SubscriptBox["zz", "2"], "-", SubscriptBox["zz", "1"]]], RowBox[List[SubscriptBox["zz", "2"], "-", "1"]]]], " ", RowBox[List["ArcTanh", "[", SqrtBox[FractionBox[RowBox[List[SubscriptBox["zz", "2"], "-", SubscriptBox["zz", "1"]]], RowBox[List[SubscriptBox["zz", "2"], "-", "1"]]]], "]"]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "n"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", SubscriptBox["zz", "1"]]], ")"]], RowBox[List["1", "+", "n"]]]]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["m", "=", "0"]], RowBox[List["n", "-", "1"]]], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["m", "+", "1"]], ")"]], " ", SuperscriptBox["2", RowBox[List["m", "-", RowBox[List["2", " ", "n"]]]]], " ", SubsuperscriptBox["zz", "1", RowBox[List[FractionBox[RowBox[List["m", "+", "1"]], "2"], "-", "n"]]], " ", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "n"]], "-", "m", "-", "2"]], ")"]], "!"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[SqrtBox[SubscriptBox["zz", "1"]], "-", SqrtBox[FractionBox[RowBox[List[SubscriptBox["zz", "2"], "-", SubscriptBox["zz", "1"]]], RowBox[List[SubscriptBox["zz", "2"], "-", "1"]]]]]], ")"]], RowBox[List[RowBox[List["-", "2"]], "-", "m"]]], "+", SuperscriptBox[RowBox[List["(", RowBox[List[SqrtBox[SubscriptBox["zz", "1"]], "+", SqrtBox[FractionBox[RowBox[List[SubscriptBox["zz", "2"], "-", SubscriptBox["zz", "1"]]], RowBox[List[SubscriptBox["zz", "2"], "-", "1"]]]]]], ")"]], RowBox[List[RowBox[List["-", "2"]], "-", "m"]]]]], ")"]], " ", RowBox[List["ArcTanh", "[", SqrtBox[SubscriptBox["zz", "1"]], "]"]]]], "-", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "m"], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[SqrtBox[SubscriptBox["zz", "1"]], "-", SqrtBox[FractionBox[RowBox[List[SubscriptBox["zz", "2"], "-", SubscriptBox["zz", "1"]]], RowBox[List[SubscriptBox["zz", "2"], "-", "1"]]]]]], ")"]], RowBox[List["j", "-", "m", "-", "1"]]], "+", SuperscriptBox[RowBox[List["(", RowBox[List[SqrtBox[SubscriptBox["zz", "1"]], "+", SqrtBox[FractionBox[RowBox[List[SubscriptBox["zz", "2"], "-", SubscriptBox["zz", "1"]]], RowBox[List[SubscriptBox["zz", "2"], "-", "1"]]]]]], ")"]], RowBox[List["j", "-", "m", "-", "1"]]]]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "j"], FractionBox[RowBox[List[SuperscriptBox["2", RowBox[List["j", "-", RowBox[List["2", " ", "k"]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", SubscriptBox["zz", "1"]]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "j", "+", "k"]]], " ", SubsuperscriptBox["zz", "1", RowBox[List[FractionBox["j", "2"], "-", "k"]]], " ", RowBox[List[RowBox[List["(", RowBox[List["j", "-", "k"]], ")"]], "!"]]]], RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["j", "-", RowBox[List["2", " ", "k"]]]], ")"]], "!"]], " ", RowBox[List["k", "!"]]]]]]]]], RowBox[List["1", "+", "j"]]]]]]], ")"]]]], RowBox[List[RowBox[List["(", RowBox[List["n", "-", "m", "-", "1"]], ")"]], "!"]]]]]]], RowBox[List[RowBox[List["n", "!"]], " ", RowBox[List["(", RowBox[List["1", "-", SubscriptBox["zz", "2"]]], ")"]]]]]]], ")"]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02





© 1998- Wolfram Research, Inc.