Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











AppellF1






Mathematica Notation

Traditional Notation









Hypergeometric Functions > AppellF1[a,b1,b2,c,z1,z2] > Series representations > Generalized power series > Expansions at z1==infinity > For the function itself





http://functions.wolfram.com/07.36.06.0017.02









  


  










Input Form





AppellF1[a, Subscript[b, 1], Subscript[b, 2], c, Subscript[z, 1], Subscript[z, 2]] \[Proportional] (((Gamma[c] Gamma[Subscript[b, 1] - a])/(Gamma[c - a] Gamma[Subscript[b, 1]])) (1 + O[1/Subscript[z, 1]]))/ (-Subscript[z, 1])^a + (((Gamma[c] Gamma[a - Subscript[b, 1]])/ (Gamma[c - Subscript[b, 1]] Gamma[a])) (1 + O[1/Subscript[z, 1]]))/ (-Subscript[z, 1])^Subscript[b, 1] /; a != Subscript[b, 1]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["AppellF1", "[", RowBox[List["a", ",", SubscriptBox["b", "1"], ",", SubscriptBox["b", "2"], ",", "c", ",", SubscriptBox["z", "1"], ",", SubscriptBox["z", "2"]]], "]"]], "\[Proportional]", RowBox[List[RowBox[List[FractionBox[RowBox[List[RowBox[List["Gamma", "[", "c", "]"]], RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["b", "1"], "-", "a"]], "]"]]]], RowBox[List[RowBox[List["Gamma", "[", RowBox[List["c", "-", "a"]], "]"]], " ", RowBox[List["Gamma", "[", SubscriptBox["b", "1"], "]"]]]]], SuperscriptBox[RowBox[List["(", RowBox[List["-", SubscriptBox["z", "1"]]], ")"]], RowBox[List["-", "a"]]], RowBox[List["(", RowBox[List["1", "+", RowBox[List["O", "[", FractionBox["1", SubscriptBox["z", "1"]], "]"]]]], ")"]]]], "+", RowBox[List[FractionBox[RowBox[List[RowBox[List["Gamma", "[", "c", "]"]], RowBox[List["Gamma", "[", RowBox[List["a", "-", SubscriptBox["b", "1"]]], "]"]]]], RowBox[List[RowBox[List["Gamma", "[", RowBox[List["c", "-", SubscriptBox["b", "1"]]], "]"]], RowBox[List["Gamma", "[", "a", "]"]]]]], SuperscriptBox[RowBox[List["(", RowBox[List["-", SubscriptBox["z", "1"]]], ")"]], RowBox[List["-", SubscriptBox["b", "1"]]]], RowBox[List["(", RowBox[List["1", "+", RowBox[List["O", "[", FractionBox["1", SubscriptBox["z", "1"]], "]"]]]], ")"]]]]]]]], "/;", RowBox[List["a", "\[NotEqual]", SubscriptBox["b", "1"]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <semantics> <msub> <mi> F </mi> <mn> 1 </mn> </msub> <annotation-xml encoding='MathML-Content'> <ci> AppellF1 </ci> </annotation-xml> </semantics> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> ; </mo> <msub> <mi> b </mi> <mn> 1 </mn> </msub> </mrow> <mo> , </mo> <mrow> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> ; </mo> <mi> c </mi> <mo> ; </mo> <msub> <mi> z </mi> <mn> 1 </mn> </msub> </mrow> <mo> , </mo> <msub> <mi> z </mi> <mn> 2 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> &#8733; </mo> <mrow> <mrow> <mfrac> <mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> c </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> - </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> - </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <msub> <mi> z </mi> <mn> 1 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mi> a </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mrow> <mi> O </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mfrac> <mn> 1 </mn> <msub> <mi> z </mi> <mn> 1 </mn> </msub> </mfrac> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> c </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <msub> <mi> b </mi> <mn> 1 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> - </mo> <msub> <mi> b </mi> <mn> 1 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <msub> <mi> z </mi> <mn> 1 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <msub> <mi> b </mi> <mn> 1 </mn> </msub> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mrow> <mi> O </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mfrac> <mn> 1 </mn> <msub> <mi> z </mi> <mn> 1 </mn> </msub> </mfrac> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> a </mi> <mo> &#8800; </mo> <msub> <mi> b </mi> <mn> 1 </mn> </msub> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <ci> Proportional </ci> <apply> <ci> AppellF1 </ci> <ci> a </ci> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <ci> c </ci> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <apply> <ci> Gamma </ci> <ci> c </ci> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <ci> O </ci> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <ci> Gamma </ci> <ci> c </ci> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <ci> a </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <ci> O </ci> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <neq /> <ci> a </ci> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["AppellF1", "[", RowBox[List["a_", ",", SubscriptBox["b_", "1"], ",", SubscriptBox["b_", "2"], ",", "c_", ",", SubscriptBox["z_", "1"], ",", SubscriptBox["z_", "2"]]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Gamma", "[", "c", "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["bb", "1"], "-", "a"]], "]"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", SubscriptBox["zz", "1"]]], ")"]], RowBox[List["-", "a"]]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["O", "[", FractionBox["1", SubscriptBox["zz", "1"]], "]"]]]], ")"]]]], RowBox[List[RowBox[List["Gamma", "[", RowBox[List["c", "-", "a"]], "]"]], " ", RowBox[List["Gamma", "[", SubscriptBox["bb", "1"], "]"]]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Gamma", "[", "c", "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["a", "-", SubscriptBox["bb", "1"]]], "]"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", SubscriptBox["zz", "1"]]], ")"]], RowBox[List["-", SubscriptBox["bb", "1"]]]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["O", "[", FractionBox["1", SubscriptBox["zz", "1"]], "]"]]]], ")"]]]], RowBox[List[RowBox[List["Gamma", "[", RowBox[List["c", "-", SubscriptBox["bb", "1"]]], "]"]], " ", RowBox[List["Gamma", "[", "a", "]"]]]]]]], "/;", RowBox[List["a", "\[NotEqual]", SubscriptBox["bb", "1"]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29





© 1998- Wolfram Research, Inc.