html, body, form { margin: 0; padding: 0; width: 100%; } #calculate { position: relative; width: 177px; height: 110px; background: transparent url(/images/alphabox/embed_functions_inside.gif) no-repeat scroll 0 0; } #i { position: relative; left: 18px; top: 44px; width: 133px; border: 0 none; outline: 0; font-size: 11px; } #eq { width: 9px; height: 10px; background: transparent; position: absolute; top: 47px; right: 18px; cursor: pointer; }

 ChebyshevT

 http://functions.wolfram.com/07.04.20.0001.01

 Input Form

 D[ChebyshevT[\[Nu], z], \[Nu]] == (-Sqrt[1 - z^2]) ArcCos[z] ChebyshevU[\[Nu] - 1, z]

 Standard Form

 Cell[BoxData[RowBox[List[RowBox[List[SubscriptBox["\[PartialD]", "\[Nu]"], RowBox[List["ChebyshevT", "[", RowBox[List["\[Nu]", ",", "z"]], "]"]]]], "\[Equal]", RowBox[List[RowBox[List["-", SqrtBox[RowBox[List["1", " ", "-", " ", SuperscriptBox["z", RowBox[List[" ", "2"]]]]]]]], RowBox[List["ArcCos", "[", "z", "]"]], " ", RowBox[List["ChebyshevU", "[", RowBox[List[RowBox[List["\[Nu]", "-", "1"]], ",", "z"]], "]"]], " "]]]]]]

 MathML Form

 T ν ( z ) ν - 1 - z 2 cos - 1 ( z ) U ν - 1 ( z ) ν ChebyshevT ν z -1 1 -1 z 2 1 2 z ChebyshevU ν -1 z [/itex]

 Rule Form

 Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List["\[Nu]_"]]], RowBox[List["ChebyshevT", "[", RowBox[List["\[Nu]_", ",", "z_"]], "]"]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["-", SqrtBox[RowBox[List["1", "-", SuperscriptBox["z", "2"]]]]]], " ", RowBox[List["ArcCos", "[", "z", "]"]], " ", RowBox[List["ChebyshevU", "[", RowBox[List[RowBox[List["\[Nu]", "-", "1"]], ",", "z"]], "]"]]]]]]]]

 Date Added to functions.wolfram.com (modification date)

 2001-10-29