Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
ChebyshevT






Mathematica Notation

Traditional Notation









Hypergeometric Functions > ChebyshevT[nu,z] > Differentiation > Fractional integro-differentiation > With respect to nu





http://functions.wolfram.com/07.04.20.0009.01









  


  










Input Form





D[ChebyshevT[\[Nu], z], {\[Nu], \[Alpha]}] == (2^\[Alpha] Sqrt[Pi] HypergeometricPFQRegularized[{1}, {(1 - \[Alpha])/2, 1 - \[Alpha]/2}, (-(1/4)) \[Nu]^2 ArcCos[z]^2])/ \[Nu]^\[Alpha]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[SubscriptBox["\[PartialD]", RowBox[List["{", RowBox[List["\[Nu]", ",", "\[Alpha]"]], "}"]]], RowBox[List["ChebyshevT", "[", RowBox[List["\[Nu]", ",", "z"]], "]"]]]], "\[Equal]", RowBox[List[SuperscriptBox["2", "\[Alpha]"], " ", SuperscriptBox["\[Nu]", RowBox[List["-", "\[Alpha]"]]], " ", SqrtBox["\[Pi]"], RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", "1", "}"]], ",", RowBox[List["{", RowBox[List[FractionBox[RowBox[List["1", "-", "\[Alpha]"]], "2"], ",", RowBox[List["1", "-", FractionBox["\[Alpha]", "2"]]]]], "}"]], ",", RowBox[List[RowBox[List["-", FractionBox["1", "4"]]], " ", SuperscriptBox["\[Nu]", "2"], " ", SuperscriptBox[RowBox[List["ArcCos", "[", "z", "]"]], "2"]]]]], "]"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mfrac> <mrow> <msup> <mo> &#8706; </mo> <mi> &#945; </mi> </msup> <mrow> <msub> <mi> T </mi> <mi> &#957; </mi> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mrow> <mo> &#8706; </mo> <msup> <mi> &#957; </mi> <mi> &#945; </mi> </msup> </mrow> </mfrac> <mo> &#10869; </mo> <mrow> <msup> <mn> 2 </mn> <mi> &#945; </mi> </msup> <mo> &#8290; </mo> <msup> <mi> &#957; </mi> <mrow> <mo> - </mo> <mi> &#945; </mi> </mrow> </msup> <mo> &#8290; </mo> <msqrt> <mi> &#960; </mi> </msqrt> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 1 </mn> </msub> <msub> <mover> <mi> F </mi> <mo> ~ </mo> </mover> <mn> 2 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> ; </mo> <mrow> <mfrac> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> &#945; </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mi> &#945; </mi> <mn> 2 </mn> </mfrac> </mrow> </mrow> <mo> ; </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> </mrow> <mo> &#8290; </mo> <msup> <mi> &#957; </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <msup> <mrow> <msup> <mi> cos </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;1&quot;, TraditionalForm]], SubscriptBox[OverscriptBox[&quot;F&quot;, &quot;~&quot;], FormBox[&quot;2&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[TagBox[&quot;1&quot;, HypergeometricPFQRegularized, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQRegularized, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[RowBox[List[TagBox[FractionBox[RowBox[List[&quot;1&quot;, &quot;-&quot;, &quot;\[Alpha]&quot;]], &quot;2&quot;], HypergeometricPFQRegularized, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;1&quot;, &quot;-&quot;, FractionBox[&quot;\[Alpha]&quot;, &quot;2&quot;]]], HypergeometricPFQRegularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQRegularized, Rule[Editable, False]], &quot;;&quot;, TagBox[RowBox[List[RowBox[List[&quot;-&quot;, FractionBox[&quot;1&quot;, &quot;4&quot;]]], &quot; &quot;, SuperscriptBox[&quot;\[Nu]&quot;, &quot;2&quot;], &quot; &quot;, SuperscriptBox[RowBox[List[SuperscriptBox[&quot;cos&quot;, RowBox[List[&quot;-&quot;, &quot;1&quot;]]], &quot;(&quot;, &quot;z&quot;, &quot;)&quot;]], &quot;2&quot;]]], HypergeometricPFQRegularized, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQRegularized[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQRegularized] </annotation> </semantics> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <partialdiff /> <bvar> <ci> &#957; </ci> <degree> <ci> &#945; </ci> </degree> </bvar> <apply> <ci> ChebyshevT </ci> <ci> &#957; </ci> <ci> z </ci> </apply> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <ci> &#945; </ci> </apply> <apply> <power /> <ci> &#957; </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#945; </ci> </apply> </apply> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> HypergeometricPFQRegularized </ci> <list> <cn type='integer'> 1 </cn> </list> <list> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#945; </ci> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> &#945; </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </list> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <apply> <power /> <ci> &#957; </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <arccos /> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List[RowBox[List["{", RowBox[List["\[Nu]_", ",", "\[Alpha]_"]], "}"]]]]], RowBox[List["ChebyshevT", "[", RowBox[List["\[Nu]_", ",", "z_"]], "]"]]]], "]"]], "\[RuleDelayed]", RowBox[List[SuperscriptBox["2", "\[Alpha]"], " ", SuperscriptBox["\[Nu]", RowBox[List["-", "\[Alpha]"]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", "1", "}"]], ",", RowBox[List["{", RowBox[List[FractionBox[RowBox[List["1", "-", "\[Alpha]"]], "2"], ",", RowBox[List["1", "-", FractionBox["\[Alpha]", "2"]]]]], "}"]], ",", RowBox[List[RowBox[List["-", FractionBox["1", "4"]]], " ", SuperscriptBox["\[Nu]", "2"], " ", SuperscriptBox[RowBox[List["ArcCos", "[", "z", "]"]], "2"]]]]], "]"]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29





© 1998-2014 Wolfram Research, Inc.