Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
ChebyshevU






Mathematica Notation

Traditional Notation









Hypergeometric Functions > ChebyshevU[nu,z] > Series representations > Generalized power series > Expansions at z==-1 > For the function itself > General case





http://functions.wolfram.com/07.05.06.0016.02









  


  










Input Form





ChebyshevU[\[Nu], z] \[Proportional] (1 + \[Nu]) Cos[Pi \[Nu]] (1 - ((\[Nu] (2 + \[Nu]))/3) (z + 1) - ((\[Nu] (1 - \[Nu]) (2 + \[Nu]) (3 + \[Nu]))/30) (z + 1)^2 - \[Ellipsis]) - (Sin[\[Nu] Pi]/(Sqrt[2] Sqrt[z + 1])) (1 + (-(1/2) - \[Nu]) (3/2 + \[Nu]) (z + 1) + (1/6) (-(1/2) - \[Nu]) (1/2 - \[Nu]) (3/2 + \[Nu]) (5/2 + \[Nu]) (z + 1)^2 + \[Ellipsis]) /; (z -> -1)










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["ChebyshevU", "[", RowBox[List["\[Nu]", ",", "z"]], "]"]], "\[Proportional]", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[Nu]"]], ")"]], RowBox[List["Cos", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]], RowBox[List["(", RowBox[List["1", "-", RowBox[List[FractionBox[RowBox[List["\[Nu]", " ", RowBox[List["(", RowBox[List["2", "+", "\[Nu]"]], ")"]]]], "3"], RowBox[List["(", RowBox[List["z", "+", "1"]], ")"]]]], "-", RowBox[List[FractionBox[RowBox[List["\[Nu]", RowBox[List["(", RowBox[List["1", "-", "\[Nu]"]], ")"]], RowBox[List["(", RowBox[List["2", "+", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List["3", "+", "\[Nu]"]], ")"]]]], "30"], SuperscriptBox[RowBox[List["(", RowBox[List["z", "+", "1"]], ")"]], "2"]]], "-", "\[Ellipsis]"]], ")"]]]], "-", RowBox[List[FractionBox[RowBox[List["Sin", "[", RowBox[List["\[Nu]", " ", "\[Pi]"]], "]"]], RowBox[List[SqrtBox["2"], SqrtBox[RowBox[List["z", "+", "1"]]]]]], RowBox[List["(", RowBox[List["1", "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "-", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List[FractionBox["3", "2"], "+", "\[Nu]"]], ")"]], RowBox[List["(", RowBox[List["z", "+", "1"]], ")"]]]], "+", RowBox[List[FractionBox["1", "6"], RowBox[List["(", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "-", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List[FractionBox["1", "2"], "-", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List[FractionBox["3", "2"], "+", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List[FractionBox["5", "2"], "+", "\[Nu]"]], ")"]], SuperscriptBox[RowBox[List["(", RowBox[List["z", "+", "1"]], ")"]], "2"]]], "+", "\[Ellipsis]"]], ")"]]]]]]]], "/;", RowBox[List["(", RowBox[List["z", "\[Rule]", RowBox[List["-", "1"]]]], ")"]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msub> <mi> U </mi> <mi> &#957; </mi> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#8733; </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> &#957; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mfrac> <mrow> <mi> &#957; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> + </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mn> 3 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mrow> <mi> &#957; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> + </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 3 </mn> <mo> + </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mn> 30 </mn> </mfrac> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mo> &#8230; </mo> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#957; </mi> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> - </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> + </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 6 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> - </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> - </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> + </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mn> 5 </mn> <mn> 2 </mn> </mfrac> <mo> + </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mo> &#8230; </mo> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <semantics> <mo> &#8594; </mo> <annotation encoding='Mathematica'> &quot;\[Rule]&quot; </annotation> </semantics> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <ci> Proportional </ci> <apply> <ci> ChebyshevU </ci> <ci> &#957; </ci> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <ci> &#957; </ci> <cn type='integer'> 1 </cn> </apply> <apply> <cos /> <apply> <times /> <pi /> <ci> &#957; </ci> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <ci> &#957; </ci> <apply> <plus /> <cn type='integer'> 2 </cn> <ci> &#957; </ci> </apply> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <ci> &#957; </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> <apply> <plus /> <cn type='integer'> 2 </cn> <ci> &#957; </ci> </apply> <apply> <plus /> <cn type='integer'> 3 </cn> <ci> &#957; </ci> </apply> <apply> <power /> <cn type='integer'> 30 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#8230; </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <apply> <sin /> <apply> <times /> <ci> &#957; </ci> <pi /> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> <apply> <plus /> <cn type='rational'> 3 <sep /> 2 </cn> <ci> &#957; </ci> </apply> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 6 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> <apply> <plus /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> <apply> <plus /> <cn type='rational'> 3 <sep /> 2 </cn> <ci> &#957; </ci> </apply> <apply> <plus /> <cn type='rational'> 5 <sep /> 2 </cn> <ci> &#957; </ci> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <ci> &#8230; </ci> </apply> </apply> </apply> </apply> </apply> <apply> <ci> Rule </ci> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["ChebyshevU", "[", RowBox[List["\[Nu]_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[Nu]"]], ")"]], " ", RowBox[List["Cos", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List[FractionBox["1", "3"], " ", RowBox[List["(", RowBox[List["\[Nu]", " ", RowBox[List["(", RowBox[List["2", "+", "\[Nu]"]], ")"]]]], ")"]], " ", RowBox[List["(", RowBox[List["z", "+", "1"]], ")"]]]], "-", RowBox[List[FractionBox["1", "30"], " ", RowBox[List["(", RowBox[List["\[Nu]", " ", RowBox[List["(", RowBox[List["1", "-", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List["2", "+", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List["3", "+", "\[Nu]"]], ")"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "+", "1"]], ")"]], "2"]]], "-", "\[Ellipsis]"]], ")"]]]], "-", FractionBox[RowBox[List[RowBox[List["Sin", "[", RowBox[List["\[Nu]", " ", "\[Pi]"]], "]"]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "-", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List[FractionBox["3", "2"], "+", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List["z", "+", "1"]], ")"]]]], "+", RowBox[List[FractionBox["1", "6"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "-", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List[FractionBox["1", "2"], "-", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List[FractionBox["3", "2"], "+", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List[FractionBox["5", "2"], "+", "\[Nu]"]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "+", "1"]], ")"]], "2"]]], "+", "\[Ellipsis]"]], ")"]]]], RowBox[List[SqrtBox["2"], " ", SqrtBox[RowBox[List["z", "+", "1"]]]]]]]], "/;", RowBox[List["(", RowBox[List["z", "\[Rule]", RowBox[List["-", "1"]]]], ")"]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29





© 1998- Wolfram Research, Inc.