Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











ClebschGordan






Mathematica Notation

Traditional Notation









Hypergeometric Functions > ClebschGordan[{j1,m1},{j2,m2},{j,m}] > Series representations > Other series representations > Series of binomial coefficients





http://functions.wolfram.com/07.38.06.0003.01









  


  










Input Form





ClebschGordan[{Subscript[j, 1], Subscript[m, 1]}, {Subscript[j, 2], Subscript[m, 2]}, {j, m}] == KroneckerDelta[m, Subscript[m, 1] + Subscript[m, 2]] ((Sqrt[Binomial[2 Subscript[j, 1], Subscript[j, 1] + Subscript[j, 2] - j]] Sqrt[Binomial[2 Subscript[j, 2], Subscript[j, 1] + Subscript[j, 2] - j]])/(Sqrt[Binomial[Subscript[j, 1] + Subscript[j, 2] + j + 1, Subscript[j, 1] + Subscript[j, 2] - j]] Sqrt[Binomial[2 Subscript[j, 1], Subscript[j, 1] - Subscript[m, 1]]] Sqrt[Binomial[2 Subscript[j, 2], Subscript[j, 2] - Subscript[m, 2]]] Sqrt[Binomial[2 j, j - m]])) Sum[(-1)^k Binomial[Subscript[j, 1] + Subscript[j, 2] - j, k] Binomial[Subscript[j, 1] - Subscript[j, 2] + j, Subscript[j, 1] - Subscript[m, 1] - k] Binomial[-Subscript[j, 1] + Subscript[j, 2] + j, Subscript[j, 2] + Subscript[m, 2] - k], {k, Max[0, Subscript[j, 2] - j - Subscript[m, 1], Subscript[j, 1] - j + Subscript[m, 2]], Min[Subscript[j, 1] + Subscript[j, 2] - j, Subscript[j, 1] - Subscript[m, 1], Subscript[j, 2] + Subscript[m, 2]]}] /; \[ScriptCapitalP]\[ScriptH]\[ScriptY]\[ScriptS]\[ScriptI]\[ScriptC]\ \[ScriptA]\[ScriptL]\[ScriptCapitalQ][{Subscript[j, 1], Subscript[m, 1]}, {Subscript[j, 2], Subscript[m, 2]}, {j, m}]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["ClebschGordan", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["j", "1"], ",", SubscriptBox["m", "1"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["j", "2"], ",", SubscriptBox["m", "2"]]], "}"]], ",", RowBox[List["{", RowBox[List["j", ",", "m"]], "}"]]]], "]"]], "\[Equal]", RowBox[List[RowBox[List["KroneckerDelta", "[", RowBox[List["m", ",", RowBox[List[SubscriptBox["m", "1"], "+", SubscriptBox["m", "2"]]]]], "]"]], " ", RowBox[List[RowBox[List["(", RowBox[List[SqrtBox[RowBox[List["Binomial", "[", RowBox[List[RowBox[List["2", SubscriptBox["j", "1"]]], ",", RowBox[List[SubscriptBox["j", "1"], "+", SubscriptBox["j", "2"], "-", "j"]]]], "]"]]], " ", SqrtBox[RowBox[List["Binomial", "[", RowBox[List[RowBox[List["2", SubscriptBox["j", "2"]]], ",", RowBox[List[SubscriptBox["j", "1"], "+", SubscriptBox["j", "2"], "-", "j"]]]], "]"]]]]], ")"]], "/", RowBox[List["(", RowBox[List[SqrtBox[RowBox[List["Binomial", "[", RowBox[List[RowBox[List[SubscriptBox["j", "1"], "+", SubscriptBox["j", "2"], "+", "j", "+", "1"]], ",", RowBox[List[SubscriptBox["j", "1"], "+", SubscriptBox["j", "2"], "-", "j"]]]], "]"]]], " ", SqrtBox[RowBox[List["Binomial", "[", RowBox[List[RowBox[List["2", SubscriptBox["j", "1"]]], ",", RowBox[List[SubscriptBox["j", "1"], "-", SubscriptBox["m", "1"]]]]], "]"]]], " ", SqrtBox[RowBox[List["Binomial", "[", RowBox[List[RowBox[List["2", SubscriptBox["j", "2"]]], ",", RowBox[List[SubscriptBox["j", "2"], "-", SubscriptBox["m", "2"]]]]], "]"]]], SqrtBox[RowBox[List["Binomial", "[", RowBox[List[RowBox[List["2", "j"]], ",", RowBox[List["j", "-", "m"]]]], "]"]]]]], ")"]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", RowBox[List["Max", "[", RowBox[List["0", ",", RowBox[List[SubscriptBox["j", "2"], "-", "j", "-", SubscriptBox["m", "1"]]], ",", RowBox[List[SubscriptBox["j", "1"], "-", "j", "+", SubscriptBox["m", "2"]]]]], "]"]]]], RowBox[List["Min", "[", RowBox[List[RowBox[List[SubscriptBox["j", "1"], "+", SubscriptBox["j", "2"], "-", "j"]], ",", RowBox[List[SubscriptBox["j", "1"], "-", SubscriptBox["m", "1"]]], ",", RowBox[List[SubscriptBox["j", "2"], "+", SubscriptBox["m", "2"]]]]], "]"]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], RowBox[List["Binomial", "[", RowBox[List[RowBox[List[SubscriptBox["j", "1"], "+", SubscriptBox["j", "2"], "-", "j"]], ",", "k"]], "]"]], " ", RowBox[List["Binomial", "[", RowBox[List[RowBox[List[SubscriptBox["j", "1"], "-", SubscriptBox["j", "2"], "+", "j"]], ",", RowBox[List[SubscriptBox["j", "1"], "-", SubscriptBox["m", "1"], "-", "k"]]]], "]"]], " ", RowBox[List["Binomial", "[", RowBox[List[RowBox[List[RowBox[List["-", SubscriptBox["j", "1"]]], "+", SubscriptBox["j", "2"], "+", "j"]], ",", RowBox[List[SubscriptBox["j", "2"], "+", SubscriptBox["m", "2"], "-", "k"]]]], "]"]]]]]]]]]], "/;", RowBox[List["\[ScriptCapitalP]\[ScriptH]\[ScriptY]\[ScriptS]\[ScriptI]\[ScriptC]\[ScriptA]\[ScriptL]\[ScriptCapitalQ]", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["j", "1"], ",", SubscriptBox["m", "1"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["j", "2"], ",", SubscriptBox["m", "2"]]], "}"]], ",", RowBox[List["{", RowBox[List["j", ",", "m"]], "}"]]]], "]"]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <semantics> <mrow> <mo> &#9001; </mo> <mrow> <mrow> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> &#8290; </mo> <mtext> &#8287; </mtext> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> &#8290; </mo> <mtext> &#8287; </mtext> <msub> <mi> m </mi> <mn> 1 </mn> </msub> <mo> &#8290; </mo> <mtext> &#8287; </mtext> <msub> <mi> m </mi> <mn> 2 </mn> </msub> </mrow> <mtext> &#8287; </mtext> <mo> &#10072; </mo> <mtext> &#8287; </mtext> <mrow> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> &#8290; </mo> <mtext> &#8287; </mtext> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> &#8290; </mo> <mtext> &#8287; </mtext> <mi> j </mi> <mo> &#8290; </mo> <mtext> &#8287; </mtext> <mi> m </mi> </mrow> </mrow> <mo> &#9002; </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[LeftAngleBracket]&quot;, RowBox[List[RowBox[List[SubscriptBox[&quot;j&quot;, &quot;1&quot;], &quot;\[MediumSpace]&quot;, SubscriptBox[&quot;j&quot;, &quot;2&quot;], &quot;\[MediumSpace]&quot;, SubscriptBox[&quot;m&quot;, &quot;1&quot;], &quot;\[MediumSpace]&quot;, SubscriptBox[&quot;m&quot;, &quot;2&quot;]]], &quot;\[MediumSpace]&quot;, &quot;\[VerticalSeparator]&quot;, &quot;\[MediumSpace]&quot;, RowBox[List[SubscriptBox[&quot;j&quot;, &quot;1&quot;], &quot;\[MediumSpace]&quot;, SubscriptBox[&quot;j&quot;, &quot;2&quot;], &quot;\[MediumSpace]&quot;, &quot;j&quot;, &quot;\[MediumSpace]&quot;, &quot;m&quot;]]]], &quot;\[RightAngleBracket]&quot;]], ClebschGordan, Rule[StripWrapperBoxes, True]] </annotation> </semantics> <mo> &#10869; </mo> <mrow> <msub> <mi> &#948; </mi> <mrow> <mi> m </mi> <mo> , </mo> <mrow> <msub> <mi> m </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> m </mi> <mn> 2 </mn> </msub> </mrow> </mrow> </msub> <mo> &#8290; </mo> <mfrac> <mrow> <msqrt> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msub> <mi> j </mi> <mn> 1 </mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mrow> <mo> - </mo> <mi> j </mi> </mrow> <mo> + </mo> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> </mrow> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[RowBox[List[&quot;2&quot;, &quot; &quot;, SubscriptBox[&quot;j&quot;, &quot;1&quot;]]], Identity, Rule[Editable, True]]], List[TagBox[RowBox[List[RowBox[List[&quot;-&quot;, &quot;j&quot;]], &quot;+&quot;, SubscriptBox[&quot;j&quot;, &quot;1&quot;], &quot;+&quot;, SubscriptBox[&quot;j&quot;, &quot;2&quot;]]], Identity, Rule[Editable, True]]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation> </semantics> </msqrt> <mo> &#8290; </mo> <msqrt> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mrow> <mo> - </mo> <mi> j </mi> </mrow> <mo> + </mo> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> </mrow> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[RowBox[List[&quot;2&quot;, &quot; &quot;, SubscriptBox[&quot;j&quot;, &quot;2&quot;]]], Identity, Rule[Editable, True]]], List[TagBox[RowBox[List[RowBox[List[&quot;-&quot;, &quot;j&quot;]], &quot;+&quot;, SubscriptBox[&quot;j&quot;, &quot;1&quot;], &quot;+&quot;, SubscriptBox[&quot;j&quot;, &quot;2&quot;]]], Identity, Rule[Editable, True]]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation> </semantics> </msqrt> </mrow> <mrow> <msqrt> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mrow> <mi> j </mi> <mo> + </mo> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mrow> <mo> - </mo> <mi> j </mi> </mrow> <mo> + </mo> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> </mrow> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[RowBox[List[&quot;j&quot;, &quot;+&quot;, SubscriptBox[&quot;j&quot;, &quot;1&quot;], &quot;+&quot;, SubscriptBox[&quot;j&quot;, &quot;2&quot;], &quot;+&quot;, &quot;1&quot;]], Identity, Rule[Editable, True]]], List[TagBox[RowBox[List[RowBox[List[&quot;-&quot;, &quot;j&quot;]], &quot;+&quot;, SubscriptBox[&quot;j&quot;, &quot;1&quot;], &quot;+&quot;, SubscriptBox[&quot;j&quot;, &quot;2&quot;]]], Identity, Rule[Editable, True]]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation> </semantics> </msqrt> <mo> &#8290; </mo> <msqrt> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msub> <mi> j </mi> <mn> 1 </mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> m </mi> <mn> 1 </mn> </msub> </mrow> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[RowBox[List[&quot;2&quot;, &quot; &quot;, SubscriptBox[&quot;j&quot;, &quot;1&quot;]]], Identity, Rule[Editable, True]]], List[TagBox[RowBox[List[SubscriptBox[&quot;j&quot;, &quot;1&quot;], &quot;-&quot;, SubscriptBox[&quot;m&quot;, &quot;1&quot;]]], Identity, Rule[Editable, True]]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation> </semantics> </msqrt> <mo> &#8290; </mo> <msqrt> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> - </mo> <msub> <mi> m </mi> <mn> 2 </mn> </msub> </mrow> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[RowBox[List[&quot;2&quot;, &quot; &quot;, SubscriptBox[&quot;j&quot;, &quot;2&quot;]]], Identity, Rule[Editable, True]]], List[TagBox[RowBox[List[SubscriptBox[&quot;j&quot;, &quot;2&quot;], &quot;-&quot;, SubscriptBox[&quot;m&quot;, &quot;2&quot;]]], Identity, Rule[Editable, True]]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation> </semantics> </msqrt> <mo> &#8290; </mo> <msqrt> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> j </mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi> j </mi> <mo> - </mo> <mi> m </mi> </mrow> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;j&quot;]], Identity, Rule[Editable, True]]], List[TagBox[RowBox[List[&quot;j&quot;, &quot;-&quot;, &quot;m&quot;]], Identity, Rule[Editable, True]]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation> </semantics> </msqrt> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mrow> <mi> max </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 0 </mn> <mo> , </mo> <mrow> <mrow> <mo> - </mo> <mi> j </mi> </mrow> <mo> + </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> - </mo> <msub> <mi> m </mi> <mn> 1 </mn> </msub> </mrow> <mo> , </mo> <mrow> <mrow> <mo> - </mo> <mi> j </mi> </mrow> <mo> + </mo> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> m </mi> <mn> 2 </mn> </msub> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mi> min </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mi> j </mi> </mrow> <mo> + </mo> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> </mrow> <mo> , </mo> <mrow> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> m </mi> <mn> 1 </mn> </msub> </mrow> <mo> , </mo> <mrow> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> + </mo> <msub> <mi> m </mi> <mn> 2 </mn> </msub> </mrow> </mrow> <mo> ) </mo> </mrow> </munderover> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> <mo> &#8290; </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mrow> <mrow> <mo> - </mo> <mi> j </mi> </mrow> <mo> + </mo> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mi> k </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[RowBox[List[RowBox[List[&quot;-&quot;, &quot;j&quot;]], &quot;+&quot;, SubscriptBox[&quot;j&quot;, &quot;1&quot;], &quot;+&quot;, SubscriptBox[&quot;j&quot;, &quot;2&quot;]]], Identity, Rule[Editable, True]]], List[TagBox[&quot;k&quot;, Identity, Rule[Editable, True]]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation> </semantics> <mo> &#8290; </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mrow> <mi> j </mi> <mo> + </mo> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mrow> <mo> - </mo> <mi> k </mi> </mrow> <mo> + </mo> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> m </mi> <mn> 1 </mn> </msub> </mrow> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[RowBox[List[&quot;j&quot;, &quot;+&quot;, SubscriptBox[&quot;j&quot;, &quot;1&quot;], &quot;-&quot;, SubscriptBox[&quot;j&quot;, &quot;2&quot;]]], Identity, Rule[Editable, True]]], List[TagBox[RowBox[List[RowBox[List[&quot;-&quot;, &quot;k&quot;]], &quot;+&quot;, SubscriptBox[&quot;j&quot;, &quot;1&quot;], &quot;-&quot;, SubscriptBox[&quot;m&quot;, &quot;1&quot;]]], Identity, Rule[Editable, True]]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation> </semantics> <mo> &#8290; </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mrow> <mi> j </mi> <mo> - </mo> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mrow> <mo> - </mo> <mi> k </mi> </mrow> <mo> + </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> + </mo> <msub> <mi> m </mi> <mn> 2 </mn> </msub> </mrow> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[RowBox[List[&quot;j&quot;, &quot;-&quot;, SubscriptBox[&quot;j&quot;, &quot;1&quot;], &quot;+&quot;, SubscriptBox[&quot;j&quot;, &quot;2&quot;]]], Identity, Rule[Editable, True]]], List[TagBox[RowBox[List[RowBox[List[&quot;-&quot;, &quot;k&quot;]], &quot;+&quot;, SubscriptBox[&quot;j&quot;, &quot;2&quot;], &quot;+&quot;, SubscriptBox[&quot;m&quot;, &quot;2&quot;]]], Identity, Rule[Editable, True]]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation> </semantics> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> &#119979;&#119997;&#120014;&#120008;&#119998;&#119992;&#119990;&#8467;&#119980; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mo> { </mo> <mrow> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> m </mi> <mn> 1 </mn> </msub> </mrow> <mo> } </mo> </mrow> <mo> , </mo> <mrow> <mo> { </mo> <mrow> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> , </mo> <msub> <mi> m </mi> <mn> 2 </mn> </msub> </mrow> <mo> } </mo> </mrow> <mo> , </mo> <mrow> <mo> { </mo> <mrow> <mi> j </mi> <mo> , </mo> <mi> m </mi> </mrow> <mo> } </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> ClebschGordan </ci> <list> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 1 </cn> </apply> </list> <list> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 2 </cn> </apply> </list> <list> <ci> j </ci> <ci> m </ci> </list> </apply> <apply> <times /> <apply> <ci> Subscript </ci> <ci> &#948; </ci> <ci> m </ci> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <ci> Binomial </ci> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <ci> Binomial </ci> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <ci> Binomial </ci> <apply> <plus /> <ci> j </ci> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <ci> Binomial </ci> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <ci> Binomial </ci> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <ci> Binomial </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> j </ci> </apply> <apply> <plus /> <ci> j </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <apply> <max /> <cn type='integer'> 0 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </lowlimit> <uplimit> <apply> <min /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </uplimit> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <apply> <ci> Binomial </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> </apply> <ci> k </ci> </apply> <apply> <ci> Binomial </ci> <apply> <plus /> <ci> j </ci> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> <apply> <ci> Binomial </ci> <apply> <plus /> <ci> j </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <ci> &#119979;&#119997;&#120014;&#120008;&#119998;&#119992;&#119990;&#8467;&#119980; </ci> <list> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 1 </cn> </apply> </list> <list> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 2 </cn> </apply> </list> <list> <ci> j </ci> <ci> m </ci> </list> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["ClebschGordan", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["j", "1"], ",", SubscriptBox["m_", "1"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["j", "2"], ",", SubscriptBox["m_", "2"]]], "}"]], ",", RowBox[List["{", RowBox[List["j", ",", "m_"]], "}"]]]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[RowBox[List["KroneckerDelta", "[", RowBox[List["m", ",", RowBox[List[SubscriptBox["mm", "1"], "+", SubscriptBox["mm", "2"]]]]], "]"]], " ", RowBox[List["(", RowBox[List[SqrtBox[RowBox[List["Binomial", "[", RowBox[List[RowBox[List["2", " ", SubscriptBox["j", "1"]]], ",", RowBox[List[SubscriptBox["j", "1"], "+", SubscriptBox["j", "2"], "-", "j"]]]], "]"]]], " ", SqrtBox[RowBox[List["Binomial", "[", RowBox[List[RowBox[List["2", " ", SubscriptBox["j", "2"]]], ",", RowBox[List[SubscriptBox["j", "1"], "+", SubscriptBox["j", "2"], "-", "j"]]]], "]"]]]]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", RowBox[List["Max", "[", RowBox[List["0", ",", RowBox[List[SubscriptBox["j", "2"], "-", "j", "-", SubscriptBox["mm", "1"]]], ",", RowBox[List[SubscriptBox["j", "1"], "-", "j", "+", SubscriptBox["mm", "2"]]]]], "]"]]]], RowBox[List["Min", "[", RowBox[List[RowBox[List[SubscriptBox["j", "1"], "+", SubscriptBox["j", "2"], "-", "j"]], ",", RowBox[List[SubscriptBox["j", "1"], "-", SubscriptBox["mm", "1"]]], ",", RowBox[List[SubscriptBox["j", "2"], "+", SubscriptBox["mm", "2"]]]]], "]"]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", RowBox[List["Binomial", "[", RowBox[List[RowBox[List[SubscriptBox["j", "1"], "+", SubscriptBox["j", "2"], "-", "j"]], ",", "k"]], "]"]], " ", RowBox[List["Binomial", "[", RowBox[List[RowBox[List[SubscriptBox["j", "1"], "-", SubscriptBox["j", "2"], "+", "j"]], ",", RowBox[List[SubscriptBox["j", "1"], "-", SubscriptBox["mm", "1"], "-", "k"]]]], "]"]], " ", RowBox[List["Binomial", "[", RowBox[List[RowBox[List[RowBox[List["-", SubscriptBox["j", "1"]]], "+", SubscriptBox["j", "2"], "+", "j"]], ",", RowBox[List[SubscriptBox["j", "2"], "+", SubscriptBox["mm", "2"], "-", "k"]]]], "]"]]]]]]]], RowBox[List[SqrtBox[RowBox[List["Binomial", "[", RowBox[List[RowBox[List[SubscriptBox["j", "1"], "+", SubscriptBox["j", "2"], "+", "j", "+", "1"]], ",", RowBox[List[SubscriptBox["j", "1"], "+", SubscriptBox["j", "2"], "-", "j"]]]], "]"]]], " ", SqrtBox[RowBox[List["Binomial", "[", RowBox[List[RowBox[List["2", " ", SubscriptBox["j", "1"]]], ",", RowBox[List[SubscriptBox["j", "1"], "-", SubscriptBox["mm", "1"]]]]], "]"]]], " ", SqrtBox[RowBox[List["Binomial", "[", RowBox[List[RowBox[List["2", " ", SubscriptBox["j", "2"]]], ",", RowBox[List[SubscriptBox["j", "2"], "-", SubscriptBox["mm", "2"]]]]], "]"]]], " ", SqrtBox[RowBox[List["Binomial", "[", RowBox[List[RowBox[List["2", " ", "j"]], ",", RowBox[List["j", "-", "m"]]]], "]"]]]]]], "/;", RowBox[List["\[ScriptCapitalP]\[ScriptH]\[ScriptY]\[ScriptS]\[ScriptI]\[ScriptC]\[ScriptA]\[ScriptL]\[ScriptCapitalQ]", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["j", "1"], ",", SubscriptBox["mm", "1"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["j", "2"], ",", SubscriptBox["mm", "2"]]], "}"]], ",", RowBox[List["{", RowBox[List["j", ",", "m"]], "}"]]]], "]"]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29





© 1998-2014 Wolfram Research, Inc.