Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











ClebschGordan






Mathematica Notation

Traditional Notation









Hypergeometric Functions > ClebschGordan[{j1,m1},{j2,m2},{j,m}] > Integral representations > Multiple integral representations > Involving the direct function





http://functions.wolfram.com/07.38.07.0009.01









  


  










Input Form





Abs[ClebschGordan[{Subscript[j, 1], 0}, {Subscript[j, 2], 0}, {j, 0}]]^2 == ((2 j + 1)/2) Integrate[Sin[\[CurlyTheta]] LegendreP[Subscript[j, 1], Cos[\[CurlyTheta]]] LegendreP[Subscript[j, 2], Cos[\[CurlyTheta]]] LegendreP[j, Cos[\[CurlyTheta]]], {\[CurlyTheta], 0, Pi}] /; Element[Subscript[j, 1], Integers] && Subscript[j, 1] >= 0 && Element[Subscript[j, 2], Integers] && Subscript[j, 2] >= 0 && Element[j, Integers] && j >= 0 && Abs[Subscript[j, 1] - Subscript[j, 2]] <= j <= Subscript[j, 1] + Subscript[j, 2]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["Abs", "[", RowBox[List["ClebschGordan", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["j", "1"], ",", "0"]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["j", "2"], ",", "0"]], "}"]], ",", RowBox[List["{", RowBox[List["j", ",", "0"]], "}"]]]], "]"]], "]"]], "2"], "\[Equal]", RowBox[List[FractionBox[RowBox[List[RowBox[List["2", "j"]], "+", "1"]], "2"], " ", RowBox[List[UnderoverscriptBox["\[Integral]", "0", "\[Pi]"], RowBox[List[RowBox[List["Sin", "[", "\[CurlyTheta]", "]"]], " ", RowBox[List["LegendreP", "[", RowBox[List[SubscriptBox["j", "1"], ",", RowBox[List["Cos", "[", "\[CurlyTheta]", "]"]]]], "]"]], " ", RowBox[List["LegendreP", "[", RowBox[List[SubscriptBox["j", "2"], ",", RowBox[List["Cos", "[", "\[CurlyTheta]", "]"]]]], "]"]], " ", RowBox[List["LegendreP", "[", RowBox[List["j", ",", RowBox[List["Cos", "[", "\[CurlyTheta]", "]"]]]], "]"]], " ", RowBox[List["\[DifferentialD]", "\[CurlyTheta]"]]]]]]]]]], "/;", RowBox[List[RowBox[List[SubscriptBox["j", "1"], "\[Element]", "Integers"]], "\[And]", RowBox[List[SubscriptBox["j", "1"], "\[GreaterEqual]", "0"]], "\[And]", RowBox[List[SubscriptBox["j", "2"], "\[Element]", "Integers"]], "\[And]", RowBox[List[SubscriptBox["j", "2"], "\[GreaterEqual]", "0"]], "\[And]", RowBox[List["j", "\[Element]", "Integers"]], "\[And]", RowBox[List["j", "\[GreaterEqual]", "0"]], "\[And]", RowBox[List[RowBox[List["Abs", "[", RowBox[List[SubscriptBox["j", "1"], "-", SubscriptBox["j", "2"]]], "]"]], "\[LessEqual]", "j", "\[LessEqual]", RowBox[List[SubscriptBox["j", "1"], "+", SubscriptBox["j", "2"]]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msup> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <semantics> <mrow> <mo> &#9001; </mo> <mrow> <mrow> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> &#8290; </mo> <mtext> &#8287; </mtext> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> &#8290; </mo> <mtext> &#8287; </mtext> <mn> 0 </mn> <mo> &#8290; </mo> <mtext> &#8287; </mtext> <mn> 0 </mn> </mrow> <mtext> &#8287; </mtext> <mo> &#10072; </mo> <mtext> &#8287; </mtext> <mrow> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> &#8290; </mo> <mtext> &#8287; </mtext> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> &#8290; </mo> <mtext> &#8287; </mtext> <mi> j </mi> <mo> &#8290; </mo> <mtext> &#8287; </mtext> <mn> 0 </mn> </mrow> </mrow> <mo> &#9002; </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[LeftAngleBracket]&quot;, RowBox[List[RowBox[List[SubscriptBox[&quot;j&quot;, &quot;1&quot;], &quot;\[MediumSpace]&quot;, SubscriptBox[&quot;j&quot;, &quot;2&quot;], &quot;\[MediumSpace]&quot;, &quot;0&quot;, &quot;\[MediumSpace]&quot;, &quot;0&quot;]], &quot;\[MediumSpace]&quot;, &quot;\[VerticalSeparator]&quot;, &quot;\[MediumSpace]&quot;, RowBox[List[SubscriptBox[&quot;j&quot;, &quot;1&quot;], &quot;\[MediumSpace]&quot;, SubscriptBox[&quot;j&quot;, &quot;2&quot;], &quot;\[MediumSpace]&quot;, &quot;j&quot;, &quot;\[MediumSpace]&quot;, &quot;0&quot;]]]], &quot;\[RightAngleBracket]&quot;]], ClebschGordan, Rule[StripWrapperBoxes, True]] </annotation> </semantics> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> <mn> 2 </mn> </msup> <mo> &#10869; </mo> <mrow> <mfrac> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> j </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <msubsup> <mo> &#8747; </mo> <mn> 0 </mn> <mi> &#960; </mi> </msubsup> <mrow> <mrow> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> &#977; </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msub> <semantics> <mi> P </mi> <annotation encoding='Mathematica'> TagBox[&quot;P&quot;, LegendreP] </annotation> </semantics> <msub> <mi> j </mi> <mn> 1 </mn> </msub> </msub> <mo> ( </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> &#977; </mi> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msub> <semantics> <mi> P </mi> <annotation encoding='Mathematica'> TagBox[&quot;P&quot;, LegendreP] </annotation> </semantics> <msub> <mi> j </mi> <mn> 2 </mn> </msub> </msub> <mo> ( </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> &#977; </mi> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msub> <semantics> <mi> P </mi> <annotation encoding='Mathematica'> TagBox[&quot;P&quot;, LegendreP] </annotation> </semantics> <mi> j </mi> </msub> <mo> ( </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> &#977; </mi> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> &#977; </mi> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> &#8712; </mo> <mi> &#8469; </mi> </mrow> <mo> &#8743; </mo> <mrow> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> &#8712; </mo> <mi> &#8469; </mi> </mrow> <mo> &#8743; </mo> <mrow> <mi> j </mi> <mo> &#8712; </mo> <mi> &#8469; </mi> </mrow> <mo> &#8743; </mo> <mrow> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <mrow> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> </mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> <mo> &#8804; </mo> <mi> j </mi> <mo> &#8804; </mo> <mrow> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <power /> <apply> <abs /> <apply> <ci> ClebschGordan </ci> <list> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 0 </cn> </list> <list> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 0 </cn> </list> <list> <ci> j </ci> <cn type='integer'> 0 </cn> </list> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> j </ci> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <int /> <bvar> <ci> &#977; </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <pi /> </uplimit> <apply> <times /> <apply> <sin /> <ci> &#977; </ci> </apply> <apply> <ci> LegendreP </ci> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <cos /> <ci> &#977; </ci> </apply> </apply> <apply> <ci> LegendreP </ci> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> <apply> <cos /> <ci> &#977; </ci> </apply> </apply> <apply> <ci> LegendreP </ci> <ci> j </ci> <apply> <cos /> <ci> &#977; </ci> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <in /> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <ci> &#8469; </ci> </apply> <apply> <in /> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> <ci> &#8469; </ci> </apply> <apply> <in /> <ci> j </ci> <ci> &#8469; </ci> </apply> <apply> <leq /> <apply> <abs /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <ci> j </ci> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", SuperscriptBox[RowBox[List["Abs", "[", RowBox[List["ClebschGordan", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["j", "1"], ",", "0"]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["j", "2"], ",", "0"]], "}"]], ",", RowBox[List["{", RowBox[List["j", ",", "0"]], "}"]]]], "]"]], "]"]], "2"], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "j"]], "+", "1"]], ")"]], " ", RowBox[List[SubsuperscriptBox["\[Integral]", "0", "\[Pi]"], RowBox[List[RowBox[List[RowBox[List["Sin", "[", "\[CurlyTheta]", "]"]], " ", RowBox[List["LegendreP", "[", RowBox[List[SubscriptBox["j", "1"], ",", RowBox[List["Cos", "[", "\[CurlyTheta]", "]"]]]], "]"]], " ", RowBox[List["LegendreP", "[", RowBox[List[SubscriptBox["j", "2"], ",", RowBox[List["Cos", "[", "\[CurlyTheta]", "]"]]]], "]"]], " ", RowBox[List["LegendreP", "[", RowBox[List["j", ",", RowBox[List["Cos", "[", "\[CurlyTheta]", "]"]]]], "]"]]]], RowBox[List["\[DifferentialD]", "\[CurlyTheta]"]]]]]]]], "/;", RowBox[List[RowBox[List[SubscriptBox["j", "1"], "\[Element]", "Integers"]], "&&", RowBox[List[SubscriptBox["j", "1"], "\[GreaterEqual]", "0"]], "&&", RowBox[List[SubscriptBox["j", "2"], "\[Element]", "Integers"]], "&&", RowBox[List[SubscriptBox["j", "2"], "\[GreaterEqual]", "0"]], "&&", RowBox[List["j", "\[Element]", "Integers"]], "&&", RowBox[List["j", "\[GreaterEqual]", "0"]], "&&", RowBox[List[RowBox[List["Abs", "[", RowBox[List[SubscriptBox["j", "1"], "-", SubscriptBox["j", "2"]]], "]"]], "\[LessEqual]", "j", "\[LessEqual]", RowBox[List[SubscriptBox["j", "1"], "+", SubscriptBox["j", "2"]]]]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29





© 1998- Wolfram Research, Inc.