Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











ClebschGordan






Mathematica Notation

Traditional Notation









Hypergeometric Functions > ClebschGordan[{j1,m1},{j2,m2},{j,m}] > Identities > Functional identities > Arguments m1, m2, m equal to zero





http://functions.wolfram.com/07.38.17.0043.01









  


  










Input Form





ClebschGordan[{Subscript[j, 1] + n, 0}, {Subscript[j, 2] - n, 0}, {j, 0}] == ((((-Subscript[j, 1] + Subscript[j, 2] + j)/2)! ((Subscript[j, 1] - Subscript[j, 2] + j)/2)! Sqrt[(-Subscript[j, 1] + Subscript[j, 2] + j - 2 n)!] Sqrt[(Subscript[j, 1] - Subscript[j, 2] + j + 2 n)!])/ (((-Subscript[j, 1] + Subscript[j, 2] + j)/2 - n)! ((Subscript[j, 1] - Subscript[j, 2] + j)/2 + n)! Sqrt[(-Subscript[j, 1] + Subscript[j, 2] + j)!] Sqrt[(Subscript[j, 1] - Subscript[j, 2] + j)!])) ClebschGordan[{Subscript[j, 1], 0}, {Subscript[j, 2], 0}, {j, 0}] /; Element[n, Integers] && Max[-Subscript[j, 1], (-Subscript[j, 1] + Subscript[j, 2] - j)/2] <= n <= Min[Subscript[j, 2], (-Subscript[j, 1] + Subscript[j, 2] + j)/2] && Element[Subscript[j, 1], Integers] && Subscript[j, 1] >= 0 && Element[Subscript[j, 2], Integers] && Subscript[j, 2] >= 0 && Element[j, Integers] && j >= 0 && Abs[Subscript[j, 1] - Subscript[j, 2]] <= j <= Subscript[j, 1] + Subscript[j, 2]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["ClebschGordan", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List[SubscriptBox["j", "1"], "+", "n"]], ",", "0"]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List[SubscriptBox["j", "2"], "-", "n"]], ",", "0"]], "}"]], ",", RowBox[List["{", RowBox[List["j", ",", "0"]], "}"]]]], "]"]], "\[Equal]", RowBox[List[FractionBox[RowBox[List[RowBox[List[RowBox[List["(", FractionBox[RowBox[List[RowBox[List["-", SubscriptBox["j", "1"]]], "+", SubscriptBox["j", "2"], "+", "j"]], "2"], ")"]], "!"]], RowBox[List[RowBox[List["(", FractionBox[RowBox[List[SubscriptBox["j", "1"], "-", SubscriptBox["j", "2"], "+", "j"]], "2"], ")"]], "!"]], SqrtBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", SubscriptBox["j", "1"]]], "+", SubscriptBox["j", "2"], "+", "j", "-", RowBox[List["2", "n"]]]], ")"]], "!"]]], " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List[SubscriptBox["j", "1"], "-", SubscriptBox["j", "2"], "+", "j", "+", RowBox[List["2", "n"]]]], ")"]], "!"]]]]], RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[FractionBox[RowBox[List[RowBox[List["-", SubscriptBox["j", "1"]]], "+", SubscriptBox["j", "2"], "+", "j"]], "2"], "-", "n"]], ")"]], "!"]], RowBox[List[RowBox[List["(", RowBox[List[FractionBox[RowBox[List[SubscriptBox["j", "1"], "-", SubscriptBox["j", "2"], "+", "j"]], "2"], "+", "n"]], ")"]], "!"]], SqrtBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", SubscriptBox["j", "1"]]], "+", SubscriptBox["j", "2"], "+", "j"]], ")"]], "!"]]], " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List[SubscriptBox["j", "1"], "-", SubscriptBox["j", "2"], "+", "j"]], ")"]], "!"]]]]]], " ", RowBox[List["ClebschGordan", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["j", "1"], ",", "0"]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["j", "2"], ",", "0"]], "}"]], ",", RowBox[List["{", RowBox[List["j", ",", "0"]], "}"]]]], "]"]]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List[RowBox[List["Max", "[", RowBox[List[RowBox[List["-", SubscriptBox["j", "1"]]], ",", FractionBox[RowBox[List[RowBox[List["-", SubscriptBox["j", "1"]]], "+", SubscriptBox["j", "2"], "-", "j"]], "2"]]], "]"]], "\[LessEqual]", "n", "\[LessEqual]", RowBox[List["Min", "[", RowBox[List[SubscriptBox["j", "2"], ",", FractionBox[RowBox[List[RowBox[List["-", SubscriptBox["j", "1"]]], "+", SubscriptBox["j", "2"], "+", "j"]], "2"]]], "]"]]]], "\[And]", RowBox[List[SubscriptBox["j", "1"], "\[Element]", "Integers"]], "\[And]", RowBox[List[SubscriptBox["j", "1"], "\[GreaterEqual]", "0"]], "\[And]", RowBox[List[SubscriptBox["j", "2"], "\[Element]", "Integers"]], "\[And]", RowBox[List[SubscriptBox["j", "2"], "\[GreaterEqual]", "0"]], "\[And]", RowBox[List["j", "\[Element]", "Integers"]], "\[And]", RowBox[List["j", "\[GreaterEqual]", "0"]], "\[And]", RowBox[List[RowBox[List["Abs", "[", RowBox[List[SubscriptBox["j", "1"], "-", SubscriptBox["j", "2"]]], "]"]], "\[LessEqual]", "j", "\[LessEqual]", RowBox[List[SubscriptBox["j", "1"], "+", SubscriptBox["j", "2"]]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <semantics> <mrow> <mo> &#9001; </mo> <mrow> <mrow> <mrow> <mi> n </mi> <mo> + </mo> <msub> <mi> j </mi> <mn> 1 </mn> </msub> </mrow> <mo> &#8290; </mo> <mtext> &#8287; </mtext> <mrow> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> - </mo> <mi> n </mi> </mrow> <mo> &#8290; </mo> <mtext> &#8287; </mtext> <mn> 0 </mn> <mo> &#8290; </mo> <mtext> &#8287; </mtext> <mn> 0 </mn> </mrow> <mtext> &#8287; </mtext> <mo> &#10072; </mo> <mtext> &#8287; </mtext> <mrow> <mrow> <mi> n </mi> <mo> + </mo> <msub> <mi> j </mi> <mn> 1 </mn> </msub> </mrow> <mo> &#8290; </mo> <mtext> &#8287; </mtext> <mrow> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> - </mo> <mi> n </mi> </mrow> <mo> &#8290; </mo> <mtext> &#8287; </mtext> <mi> j </mi> <mo> &#8290; </mo> <mtext> &#8287; </mtext> <mn> 0 </mn> </mrow> </mrow> <mo> &#9002; </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[LeftAngleBracket]&quot;, RowBox[List[RowBox[List[RowBox[List[&quot;n&quot;, &quot;+&quot;, SubscriptBox[&quot;j&quot;, &quot;1&quot;]]], &quot;\[MediumSpace]&quot;, RowBox[List[SubscriptBox[&quot;j&quot;, &quot;2&quot;], &quot;-&quot;, &quot;n&quot;]], &quot;\[MediumSpace]&quot;, &quot;0&quot;, &quot;\[MediumSpace]&quot;, &quot;0&quot;]], &quot;\[MediumSpace]&quot;, &quot;\[VerticalSeparator]&quot;, &quot;\[MediumSpace]&quot;, RowBox[List[RowBox[List[&quot;n&quot;, &quot;+&quot;, SubscriptBox[&quot;j&quot;, &quot;1&quot;]]], &quot;\[MediumSpace]&quot;, RowBox[List[SubscriptBox[&quot;j&quot;, &quot;2&quot;], &quot;-&quot;, &quot;n&quot;]], &quot;\[MediumSpace]&quot;, &quot;j&quot;, &quot;\[MediumSpace]&quot;, &quot;0&quot;]]]], &quot;\[RightAngleBracket]&quot;]], ClebschGordan, Rule[StripWrapperBoxes, True]] </annotation> </semantics> <mo> &#10869; </mo> <mrow> <mfrac> <mrow> <mrow> <mrow> <mo> ( </mo> <mfrac> <mrow> <mrow> <mo> - </mo> <msub> <mi> j </mi> <mn> 1 </mn> </msub> </mrow> <mo> + </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> + </mo> <mi> j </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <mrow> <mrow> <mo> ( </mo> <mfrac> <mrow> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> + </mo> <mi> j </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <msub> <mi> j </mi> <mn> 1 </mn> </msub> </mrow> <mo> + </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> + </mo> <mi> j </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mo> ( </mo> <mrow> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> + </mo> <mi> j </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </msqrt> </mrow> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mfrac> <mrow> <mrow> <mo> - </mo> <msub> <mi> j </mi> <mn> 1 </mn> </msub> </mrow> <mo> + </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> + </mo> <mi> j </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> - </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mfrac> <mrow> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> + </mo> <mi> j </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> + </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <msub> <mi> j </mi> <mn> 1 </mn> </msub> </mrow> <mo> + </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> + </mo> <mi> j </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mo> ( </mo> <mrow> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> + </mo> <mi> j </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </msqrt> </mrow> </mfrac> <mo> &#8290; </mo> <semantics> <mrow> <mo> &#9001; </mo> <mrow> <mrow> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> &#8290; </mo> <mtext> &#8287; </mtext> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> &#8290; </mo> <mtext> &#8287; </mtext> <mn> 0 </mn> <mo> &#8290; </mo> <mtext> &#8287; </mtext> <mn> 0 </mn> </mrow> <mtext> &#8287; </mtext> <mo> &#10072; </mo> <mtext> &#8287; </mtext> <mrow> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> &#8290; </mo> <mtext> &#8287; </mtext> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> &#8290; </mo> <mtext> &#8287; </mtext> <mi> j </mi> <mo> &#8290; </mo> <mtext> &#8287; </mtext> <mn> 0 </mn> </mrow> </mrow> <mo> &#9002; </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[LeftAngleBracket]&quot;, RowBox[List[RowBox[List[SubscriptBox[&quot;j&quot;, &quot;1&quot;], &quot;\[MediumSpace]&quot;, SubscriptBox[&quot;j&quot;, &quot;2&quot;], &quot;\[MediumSpace]&quot;, &quot;0&quot;, &quot;\[MediumSpace]&quot;, &quot;0&quot;]], &quot;\[MediumSpace]&quot;, &quot;\[VerticalSeparator]&quot;, &quot;\[MediumSpace]&quot;, RowBox[List[SubscriptBox[&quot;j&quot;, &quot;1&quot;], &quot;\[MediumSpace]&quot;, SubscriptBox[&quot;j&quot;, &quot;2&quot;], &quot;\[MediumSpace]&quot;, &quot;j&quot;, &quot;\[MediumSpace]&quot;, &quot;0&quot;]]]], &quot;\[RightAngleBracket]&quot;]], ClebschGordan, Rule[StripWrapperBoxes, True]] </annotation> </semantics> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> n </mi> <mo> &#8712; </mo> <semantics> <mi> &#8484; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubleStruckCapitalZ]&quot;, Function[Integers]] </annotation> </semantics> </mrow> <mo> &#8743; </mo> <mrow> <mrow> <mi> max </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <msub> <mi> j </mi> <mn> 1 </mn> </msub> </mrow> <mo> , </mo> <mfrac> <mrow> <mrow> <mo> - </mo> <mi> j </mi> </mrow> <mo> - </mo> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> </mrow> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> &#8804; </mo> <mi> n </mi> <mo> &#8804; </mo> <mrow> <mi> min </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> , </mo> <mfrac> <mrow> <mi> j </mi> <mo> - </mo> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> </mrow> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#8743; </mo> <mrow> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> &#8712; </mo> <mi> &#8469; </mi> </mrow> <mo> &#8743; </mo> <mrow> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> &#8712; </mo> <mi> &#8469; </mi> </mrow> <mo> &#8743; </mo> <mrow> <mi> j </mi> <mo> &#8712; </mo> <mi> &#8469; </mi> </mrow> <mo> &#8743; </mo> <mrow> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <mrow> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> </mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> <mo> &#8804; </mo> <mi> j </mi> <mo> &#8804; </mo> <mrow> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> ClebschGordan </ci> <list> <apply> <plus /> <ci> n </ci> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> 0 </cn> </list> <list> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> <cn type='integer'> 0 </cn> </list> <list> <ci> j </ci> <cn type='integer'> 0 </cn> </list> </apply> <apply> <times /> <apply> <times /> <apply> <factorial /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> <ci> j </ci> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <factorial /> <apply> <times /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> </apply> <ci> j </ci> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <factorial /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> <ci> j </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <factorial /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> </apply> <ci> j </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <factorial /> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> <ci> j </ci> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> </apply> <apply> <factorial /> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> </apply> <ci> j </ci> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <ci> n </ci> </apply> </apply> <apply> <power /> <apply> <factorial /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> <ci> j </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <factorial /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> </apply> <ci> j </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> ClebschGordan </ci> <list> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 0 </cn> </list> <list> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 0 </cn> </list> <list> <ci> j </ci> <cn type='integer'> 0 </cn> </list> </apply> </apply> </apply> <apply> <and /> <apply> <in /> <ci> n </ci> <integers /> </apply> <apply> <leq /> <apply> <max /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <ci> n </ci> <apply> <min /> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <apply> <plus /> <ci> j </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <in /> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <ci> &#8469; </ci> </apply> <apply> <in /> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> <ci> &#8469; </ci> </apply> <apply> <in /> <ci> j </ci> <ci> &#8469; </ci> </apply> <apply> <leq /> <apply> <abs /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <ci> j </ci> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["ClebschGordan", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List[SubscriptBox["j", "1"], "+", "n_"]], ",", "0"]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List[SubscriptBox["j", "2"], "-", "n_"]], ",", "0"]], "}"]], ",", RowBox[List["{", RowBox[List["j", ",", "0"]], "}"]]]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", SubscriptBox["j", "1"]]], "+", SubscriptBox["j", "2"], "+", "j"]], ")"]]]], ")"]], "!"]], " ", RowBox[List[RowBox[List["(", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[SubscriptBox["j", "1"], "-", SubscriptBox["j", "2"], "+", "j"]], ")"]]]], ")"]], "!"]], " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", SubscriptBox["j", "1"]]], "+", SubscriptBox["j", "2"], "+", "j", "-", RowBox[List["2", " ", "n"]]]], ")"]], "!"]]], " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List[SubscriptBox["j", "1"], "-", SubscriptBox["j", "2"], "+", "j", "+", RowBox[List["2", " ", "n"]]]], ")"]], "!"]]]]], ")"]], " ", RowBox[List["ClebschGordan", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["j", "1"], ",", "0"]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["j", "2"], ",", "0"]], "}"]], ",", RowBox[List["{", RowBox[List["j", ",", "0"]], "}"]]]], "]"]]]], RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", SubscriptBox["j", "1"]]], "+", SubscriptBox["j", "2"], "+", "j"]], ")"]]]], "-", "n"]], ")"]], "!"]], " ", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[SubscriptBox["j", "1"], "-", SubscriptBox["j", "2"], "+", "j"]], ")"]]]], "+", "n"]], ")"]], "!"]], " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", SubscriptBox["j", "1"]]], "+", SubscriptBox["j", "2"], "+", "j"]], ")"]], "!"]]], " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List[SubscriptBox["j", "1"], "-", SubscriptBox["j", "2"], "+", "j"]], ")"]], "!"]]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List[RowBox[List["Max", "[", RowBox[List[RowBox[List["-", SubscriptBox["j", "1"]]], ",", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", SubscriptBox["j", "1"]]], "+", SubscriptBox["j", "2"], "-", "j"]], ")"]]]]]], "]"]], "\[LessEqual]", "n", "\[LessEqual]", RowBox[List["Min", "[", RowBox[List[SubscriptBox["j", "2"], ",", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", SubscriptBox["j", "1"]]], "+", SubscriptBox["j", "2"], "+", "j"]], ")"]]]]]], "]"]]]], "&&", RowBox[List[SubscriptBox["j", "1"], "\[Element]", "Integers"]], "&&", RowBox[List[SubscriptBox["j", "1"], "\[GreaterEqual]", "0"]], "&&", RowBox[List[SubscriptBox["j", "2"], "\[Element]", "Integers"]], "&&", RowBox[List[SubscriptBox["j", "2"], "\[GreaterEqual]", "0"]], "&&", RowBox[List["j", "\[Element]", "Integers"]], "&&", RowBox[List["j", "\[GreaterEqual]", "0"]], "&&", RowBox[List[RowBox[List["Abs", "[", RowBox[List[SubscriptBox["j", "1"], "-", SubscriptBox["j", "2"]]], "]"]], "\[LessEqual]", "j", "\[LessEqual]", RowBox[List[SubscriptBox["j", "1"], "+", SubscriptBox["j", "2"]]]]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29





© 1998-2014 Wolfram Research, Inc.