Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











ClebschGordan






Mathematica Notation

Traditional Notation









Hypergeometric Functions > ClebschGordan[{j1,m1},{j2,m2},{j,m}] > Identities > Functional identities > Involving three Clebsch Gordan coefficients





http://functions.wolfram.com/07.38.17.0065.01









  


  










Input Form





ClebschGordan[{Subscript[j, 1], Subscript[m, 1]}, {Subscript[j, 2], Subscript[m, 2]}, {j, m}] == -(Sqrt[1 + 2 j] ClebschGordan[{(1/2) (-1 - j + Subscript[j, 2] - Subscript[m, 1]), (1/2) (-1 - j - m - Subscript[j, 2] - Subscript[m, 2])}, {(1/2) (-1 - j + Subscript[j, 2] + Subscript[m, 1]), (1/2) (-1 - j + m - Subscript[j, 2] + Subscript[m, 2])}, {-1 - Subscript[j, 1], -1 - j - Subscript[j, 2]}] Sqrt[Gamma[-j - m]] Sqrt[Gamma[1 + j - m]] Sqrt[Gamma[-j + m]] Sqrt[Gamma[1 + j + m]] Sqrt[Gamma[1 + j + Subscript[j, 1] - Subscript[j, 2]]] Sqrt[Gamma[-j - Subscript[j, 1] + Subscript[j, 2]]] Sqrt[Gamma[-Subscript[j, 1] - Subscript[m, 1]]] Sqrt[Gamma[1 + Subscript[j, 1] + Subscript[m, 1]]] Sin[Pi (j - Subscript[j, 2] + Subscript[m, 1])])/ (Pi Sqrt[Gamma[-1 - j - Subscript[j, 1] - Subscript[j, 2]]] Sqrt[Gamma[2 + j + Subscript[j, 1] + Subscript[j, 2]]] Sqrt[Gamma[1 + Subscript[j, 1] - Subscript[m, 1]]] Sqrt[Gamma[-Subscript[j, 1] + Subscript[m, 1]]] Sqrt[-1 - 2 Subscript[j, 1]]) - (1/Sqrt[1 + j + Subscript[j, 2] - Subscript[m, 1]]) (Sqrt[1 + 2 j] ClebschGordan[{Subscript[j, 1], -j + Subscript[j, 2]}, {(1/2) (j + Subscript[j, 2] + Subscript[m, 1]), (1/2) (j + m - Subscript[j, 2] + Subscript[m, 2])}, {(1/2) (j + Subscript[j, 2] - Subscript[m, 1]), (1/2) (-j + m + Subscript[j, 2] + Subscript[m, 2])}] Csc[(j + m) Pi] Csc[Pi (j + Subscript[j, 1] - Subscript[j, 2])] Csc[Pi (Subscript[j, 1] + Subscript[m, 1])] Sin[Pi (j - Subscript[j, 1] - Subscript[j, 2])] Sin[Pi (Subscript[j, 1] - Subscript[m, 1])] Sin[Pi (Subscript[j, 2] + Subscript[m, 2])]) /; Re[j + Subscript[j, 1] + Subscript[j, 2]] > -2 && Re[j + Subscript[j, 1] - Subscript[j, 2]] < 0










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["ClebschGordan", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["j", "1"], ",", SubscriptBox["m", "1"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["j", "2"], ",", SubscriptBox["m", "2"]]], "}"]], ",", RowBox[List["{", RowBox[List["j", ",", "m"]], "}"]]]], "]"]], "\[Equal]", RowBox[List[RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List[SqrtBox[RowBox[List["1", "+", RowBox[List["2", " ", "j"]]]]], " ", RowBox[List["ClebschGordan", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", "j", "+", SubscriptBox["j", "2"], "-", SubscriptBox["m", "1"]]], ")"]]]], ",", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", "j", "-", "m", "-", SubscriptBox["j", "2"], "-", SubscriptBox["m", "2"]]], ")"]]]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", "j", "+", SubscriptBox["j", "2"], "+", SubscriptBox["m", "1"]]], ")"]]]], ",", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", "j", "+", "m", "-", SubscriptBox["j", "2"], "+", SubscriptBox["m", "2"]]], ")"]]]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List[RowBox[List["-", "1"]], "-", SubscriptBox["j", "1"]]], ",", RowBox[List[RowBox[List["-", "1"]], "-", "j", "-", SubscriptBox["j", "2"]]]]], "}"]]]], "]"]], " ", SqrtBox[RowBox[List["Gamma", "[", RowBox[List[RowBox[List["-", "j"]], "-", "m"]], "]"]]], " ", SqrtBox[RowBox[List["Gamma", "[", RowBox[List["1", "+", "j", "-", "m"]], "]"]]], " ", SqrtBox[RowBox[List["Gamma", "[", RowBox[List[RowBox[List["-", "j"]], "+", "m"]], "]"]]], " ", SqrtBox[RowBox[List["Gamma", "[", RowBox[List["1", "+", "j", "+", "m"]], "]"]]], " ", SqrtBox[RowBox[List["Gamma", "[", RowBox[List["1", "+", "j", "+", SubscriptBox["j", "1"], "-", SubscriptBox["j", "2"]]], "]"]]], " ", SqrtBox[RowBox[List["Gamma", "[", RowBox[List[RowBox[List["-", "j"]], "-", SubscriptBox["j", "1"], "+", SubscriptBox["j", "2"]]], "]"]]], " ", SqrtBox[RowBox[List["Gamma", "[", RowBox[List[RowBox[List["-", SubscriptBox["j", "1"]]], "-", SubscriptBox["m", "1"]]], "]"]]], " ", SqrtBox[RowBox[List["Gamma", "[", RowBox[List["1", "+", SubscriptBox["j", "1"], "+", SubscriptBox["m", "1"]]], "]"]]], " ", RowBox[List["Sin", "[", RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List["j", "-", SubscriptBox["j", "2"], "+", SubscriptBox["m", "1"]]], ")"]]]], "]"]]]], ")"]]]], "/", RowBox[List["(", RowBox[List["\[Pi]", " ", SqrtBox[RowBox[List["Gamma", "[", RowBox[List[RowBox[List["-", "1"]], "-", "j", "-", SubscriptBox["j", "1"], "-", SubscriptBox["j", "2"]]], "]"]]], " ", SqrtBox[RowBox[List["Gamma", "[", RowBox[List["2", "+", "j", "+", SubscriptBox["j", "1"], "+", SubscriptBox["j", "2"]]], "]"]]], " ", SqrtBox[RowBox[List["Gamma", "[", RowBox[List["1", "+", SubscriptBox["j", "1"], "-", SubscriptBox["m", "1"]]], "]"]]], " ", SqrtBox[RowBox[List["Gamma", "[", RowBox[List[RowBox[List["-", SubscriptBox["j", "1"]]], "+", SubscriptBox["m", "1"]]], "]"]]], " ", SqrtBox[RowBox[List[RowBox[List["-", "1"]], "-", RowBox[List["2", " ", SubscriptBox["j", "1"]]]]]]]], ")"]]]], "-", RowBox[List[FractionBox["1", SqrtBox[RowBox[List["1", "+", "j", "+", SubscriptBox["j", "2"], "-", SubscriptBox["m", "1"]]]]], RowBox[List["(", RowBox[List[SqrtBox[RowBox[List["1", "+", RowBox[List["2", " ", "j"]]]]], " ", RowBox[List["ClebschGordan", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["j", "1"], ",", RowBox[List[RowBox[List["-", "j"]], "+", SubscriptBox["j", "2"]]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["j", "+", SubscriptBox["j", "2"], "+", SubscriptBox["m", "1"]]], ")"]]]], ",", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["j", "+", "m", "-", SubscriptBox["j", "2"], "+", SubscriptBox["m", "2"]]], ")"]]]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["j", "+", SubscriptBox["j", "2"], "-", SubscriptBox["m", "1"]]], ")"]]]], ",", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "j"]], "+", "m", "+", SubscriptBox["j", "2"], "+", SubscriptBox["m", "2"]]], ")"]]]]]], "}"]]]], "]"]], " ", RowBox[List["Csc", "[", RowBox[List[RowBox[List["(", RowBox[List["j", "+", "m"]], ")"]], " ", "\[Pi]"]], "]"]], " ", RowBox[List["Csc", "[", RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List["j", "+", SubscriptBox["j", "1"], "-", SubscriptBox["j", "2"]]], ")"]]]], "]"]], " ", RowBox[List["Csc", "[", RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List[SubscriptBox["j", "1"], "+", SubscriptBox["m", "1"]]], ")"]]]], "]"]], " ", RowBox[List["Sin", "[", RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List["j", "-", SubscriptBox["j", "1"], "-", SubscriptBox["j", "2"]]], ")"]]]], "]"]], " ", RowBox[List["Sin", "[", RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List[SubscriptBox["j", "1"], "-", SubscriptBox["m", "1"]]], ")"]]]], "]"]], " ", RowBox[List["Sin", "[", RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List[SubscriptBox["j", "2"], "+", SubscriptBox["m", "2"]]], ")"]]]], "]"]]]], ")"]]]]]]]], "/;", RowBox[List[RowBox[List[RowBox[List["Re", "[", RowBox[List["j", "+", SubscriptBox["j", "1"], "+", SubscriptBox["j", "2"]]], "]"]], ">", RowBox[List["-", "2"]]]], "\[And]", RowBox[List[RowBox[List["Re", "[", RowBox[List["j", "+", SubscriptBox["j", "1"], "-", SubscriptBox["j", "2"]]], "]"]], "<", "0"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <semantics> <mrow> <mo> &#9001; </mo> <mrow> <mrow> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> &#8290; </mo> <mtext> &#8287; </mtext> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> &#8290; </mo> <mtext> &#8287; </mtext> <msub> <mi> m </mi> <mn> 1 </mn> </msub> <mo> &#8290; </mo> <mtext> &#8287; </mtext> <msub> <mi> m </mi> <mn> 2 </mn> </msub> </mrow> <mtext> &#8287; </mtext> <mo> &#10072; </mo> <mtext> &#8287; </mtext> <mrow> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> &#8290; </mo> <mtext> &#8287; </mtext> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> &#8290; </mo> <mtext> &#8287; </mtext> <mi> j </mi> <mo> &#8290; </mo> <mtext> &#8287; </mtext> <mi> m </mi> </mrow> </mrow> <mo> &#9002; </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[LeftAngleBracket]&quot;, RowBox[List[RowBox[List[SubscriptBox[&quot;j&quot;, &quot;1&quot;], &quot;\[MediumSpace]&quot;, SubscriptBox[&quot;j&quot;, &quot;2&quot;], &quot;\[MediumSpace]&quot;, SubscriptBox[&quot;m&quot;, &quot;1&quot;], &quot;\[MediumSpace]&quot;, SubscriptBox[&quot;m&quot;, &quot;2&quot;]]], &quot;\[MediumSpace]&quot;, &quot;\[VerticalSeparator]&quot;, &quot;\[MediumSpace]&quot;, RowBox[List[SubscriptBox[&quot;j&quot;, &quot;1&quot;], &quot;\[MediumSpace]&quot;, SubscriptBox[&quot;j&quot;, &quot;2&quot;], &quot;\[MediumSpace]&quot;, &quot;j&quot;, &quot;\[MediumSpace]&quot;, &quot;m&quot;]]]], &quot;\[RightAngleBracket]&quot;]], ClebschGordan, Rule[StripWrapperBoxes, True]] </annotation> </semantics> <mo> &#10869; </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mrow> <mfrac> <mn> 1 </mn> <msqrt> <mrow> <mi> j </mi> <mo> + </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> - </mo> <msub> <mi> m </mi> <mn> 1 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msqrt> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> j </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> &#8290; </mo> <mtext> </mtext> <mtext> </mtext> <mrow> <mi> csc </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> j </mi> <mo> + </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> csc </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> j </mi> <mo> + </mo> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> csc </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> m </mi> <mn> 1 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> j </mi> <mo> - </mo> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> m </mi> <mn> 1 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> + </mo> <msub> <mi> m </mi> <mn> 2 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> &#8290; </mo> <mrow> <mo> &#9001; </mo> <mrow> <mrow> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> &#8290; </mo> <mtext> &#8287; </mtext> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> j </mi> <mo> + </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> + </mo> <msub> <mi> m </mi> <mn> 1 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#8290; </mo> <mtext> &#8287; </mtext> <mrow> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> - </mo> <mi> j </mi> </mrow> <mo> &#8290; </mo> <mtext> &#8287; </mtext> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> j </mi> <mo> + </mo> <mi> m </mi> <mo> - </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> + </mo> <msub> <mi> m </mi> <mn> 2 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mtext> &#8287; </mtext> <mo> &#10072; </mo> <mtext> &#8287; </mtext> <mrow> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> &#8290; </mo> <mtext> &#8287; </mtext> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> j </mi> <mo> + </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> + </mo> <msub> <mi> m </mi> <mn> 1 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#8290; </mo> <mtext> &#8287; </mtext> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> j </mi> <mo> + </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> - </mo> <msub> <mi> m </mi> <mn> 1 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#8290; </mo> <mtext> &#8287; </mtext> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> j </mi> </mrow> <mo> + </mo> <mi> m </mi> <mo> + </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> + </mo> <msub> <mi> m </mi> <mn> 2 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> &#9002; </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <msqrt> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> j </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> &#8290; </mo> <mtext> </mtext> <mtext> </mtext> <msqrt> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> j </mi> </mrow> <mo> - </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> j </mi> <mo> - </mo> <mi> m </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mi> j </mi> </mrow> <mo> ) </mo> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> j </mi> <mo> + </mo> <mi> m </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> j </mi> <mo> + </mo> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> j </mi> </mrow> <mo> - </mo> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <msub> <mi> j </mi> <mn> 1 </mn> </msub> </mrow> <mo> - </mo> <msub> <mi> m </mi> <mn> 1 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> m </mi> <mn> 1 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> j </mi> <mo> - </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> + </mo> <msub> <mi> m </mi> <mn> 1 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> / </mo> <mrow> <mo> ( </mo> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <msqrt> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> j </mi> </mrow> <mo> - </mo> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> j </mi> <mo> + </mo> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> m </mi> <mn> 1 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msub> <mi> m </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> j </mi> <mn> 1 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> &#8290; </mo> <msub> <mi> j </mi> <mn> 1 </mn> </msub> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#8290; </mo> <mrow> <mo> &#9001; </mo> <mrow> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> j </mi> </mrow> <mo> + </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> - </mo> <msub> <mi> m </mi> <mn> 1 </mn> </msub> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#8290; </mo> <mtext> &#8287; </mtext> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> j </mi> </mrow> <mo> + </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> + </mo> <msub> <mi> m </mi> <mn> 1 </mn> </msub> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#8290; </mo> <mtext> &#8287; </mtext> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> j </mi> </mrow> <mo> - </mo> <mi> m </mi> <mo> - </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> - </mo> <msub> <mi> m </mi> <mn> 2 </mn> </msub> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#8290; </mo> <mtext> &#8287; </mtext> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> j </mi> </mrow> <mo> + </mo> <mi> m </mi> <mo> - </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> + </mo> <msub> <mi> m </mi> <mn> 2 </mn> </msub> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mtext> &#8287; </mtext> <mo> &#10072; </mo> <mtext> &#8287; </mtext> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> j </mi> </mrow> <mo> + </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> - </mo> <msub> <mi> m </mi> <mn> 1 </mn> </msub> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#8290; </mo> <mtext> &#8287; </mtext> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> j </mi> </mrow> <mo> + </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> + </mo> <msub> <mi> m </mi> <mn> 1 </mn> </msub> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#8290; </mo> <mtext> &#8287; </mtext> <mrow> <mrow> <mo> - </mo> <msub> <mi> j </mi> <mn> 1 </mn> </msub> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> &#8290; </mo> <mtext> &#8287; </mtext> <mrow> <mrow> <mo> - </mo> <mi> j </mi> </mrow> <mo> - </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> - </mo> <mn> 1 </mn> </mrow> </mrow> </mrow> <mo> &#9002; </mo> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> j </mi> <mo> + </mo> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> &gt; </mo> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> </mrow> <mo> &#8743; </mo> <mrow> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> j </mi> <mo> + </mo> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> &lt; </mo> <mn> 0 </mn> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> ClebschGordan </ci> <list> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 1 </cn> </apply> </list> <list> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 2 </cn> </apply> </list> <list> <ci> j </ci> <ci> m </ci> </list> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <apply> <plus /> <ci> j </ci> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> j </ci> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <csc /> <apply> <times /> <apply> <plus /> <ci> j </ci> <ci> m </ci> </apply> <pi /> </apply> </apply> <apply> <csc /> <apply> <times /> <pi /> <apply> <plus /> <ci> j </ci> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <csc /> <apply> <times /> <pi /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> <apply> <sin /> <apply> <times /> <pi /> <apply> <plus /> <ci> j </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <sin /> <apply> <times /> <pi /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <sin /> <apply> <times /> <pi /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <ci> AngleBracket </ci> <apply> <ci> VerticalSeparator </ci> <apply> <times /> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <ci> j </ci> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <ci> j </ci> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <ci> j </ci> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <ci> j </ci> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <ci> m </ci> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> j </ci> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> j </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> j </ci> <ci> m </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> j </ci> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <sin /> <apply> <times /> <pi /> <apply> <plus /> <ci> j </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <pi /> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> j </ci> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> AngleBracket </ci> <apply> <ci> VerticalSeparator </ci> <apply> <times /> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <gt /> <apply> <real /> <apply> <plus /> <ci> j </ci> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='integer'> -2 </cn> </apply> <apply> <lt /> <apply> <real /> <apply> <plus /> <ci> j </ci> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["ClebschGordan", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["j", "1"], ",", SubscriptBox["m_", "1"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["j", "2"], ",", SubscriptBox["m_", "2"]]], "}"]], ",", RowBox[List["{", RowBox[List["j", ",", "m_"]], "}"]]]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List["-", FractionBox[RowBox[List[SqrtBox[RowBox[List["1", "+", RowBox[List["2", " ", "j"]]]]], " ", RowBox[List["ClebschGordan", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", "j", "+", SubscriptBox["j", "2"], "-", SubscriptBox["mm", "1"]]], ")"]]]], ",", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", "j", "-", "m", "-", SubscriptBox["j", "2"], "-", SubscriptBox["mm", "2"]]], ")"]]]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", "j", "+", SubscriptBox["j", "2"], "+", SubscriptBox["mm", "1"]]], ")"]]]], ",", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", "j", "+", "m", "-", SubscriptBox["j", "2"], "+", SubscriptBox["mm", "2"]]], ")"]]]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List[RowBox[List["-", "1"]], "-", SubscriptBox["j", "1"]]], ",", RowBox[List[RowBox[List["-", "1"]], "-", "j", "-", SubscriptBox["j", "2"]]]]], "}"]]]], "]"]], " ", SqrtBox[RowBox[List["Gamma", "[", RowBox[List[RowBox[List["-", "j"]], "-", "m"]], "]"]]], " ", SqrtBox[RowBox[List["Gamma", "[", RowBox[List["1", "+", "j", "-", "m"]], "]"]]], " ", SqrtBox[RowBox[List["Gamma", "[", RowBox[List[RowBox[List["-", "j"]], "+", "m"]], "]"]]], " ", SqrtBox[RowBox[List["Gamma", "[", RowBox[List["1", "+", "j", "+", "m"]], "]"]]], " ", SqrtBox[RowBox[List["Gamma", "[", RowBox[List["1", "+", "j", "+", SubscriptBox["j", "1"], "-", SubscriptBox["j", "2"]]], "]"]]], " ", SqrtBox[RowBox[List["Gamma", "[", RowBox[List[RowBox[List["-", "j"]], "-", SubscriptBox["j", "1"], "+", SubscriptBox["j", "2"]]], "]"]]], " ", SqrtBox[RowBox[List["Gamma", "[", RowBox[List[RowBox[List["-", SubscriptBox["j", "1"]]], "-", SubscriptBox["mm", "1"]]], "]"]]], " ", SqrtBox[RowBox[List["Gamma", "[", RowBox[List["1", "+", SubscriptBox["j", "1"], "+", SubscriptBox["mm", "1"]]], "]"]]], " ", RowBox[List["Sin", "[", RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List["j", "-", SubscriptBox["j", "2"], "+", SubscriptBox["mm", "1"]]], ")"]]]], "]"]]]], RowBox[List["\[Pi]", " ", SqrtBox[RowBox[List["Gamma", "[", RowBox[List[RowBox[List["-", "1"]], "-", "j", "-", SubscriptBox["j", "1"], "-", SubscriptBox["j", "2"]]], "]"]]], " ", SqrtBox[RowBox[List["Gamma", "[", RowBox[List["2", "+", "j", "+", SubscriptBox["j", "1"], "+", SubscriptBox["j", "2"]]], "]"]]], " ", SqrtBox[RowBox[List["Gamma", "[", RowBox[List["1", "+", SubscriptBox["j", "1"], "-", SubscriptBox["mm", "1"]]], "]"]]], " ", SqrtBox[RowBox[List["Gamma", "[", RowBox[List[RowBox[List["-", SubscriptBox["j", "1"]]], "+", SubscriptBox["mm", "1"]]], "]"]]], " ", SqrtBox[RowBox[List[RowBox[List["-", "1"]], "-", RowBox[List["2", " ", SubscriptBox["j", "1"]]]]]]]]]]], "-", FractionBox[RowBox[List[SqrtBox[RowBox[List["1", "+", RowBox[List["2", " ", "j"]]]]], " ", RowBox[List["ClebschGordan", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["j", "1"], ",", RowBox[List[RowBox[List["-", "j"]], "+", SubscriptBox["j", "2"]]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["j", "+", SubscriptBox["j", "2"], "+", SubscriptBox["mm", "1"]]], ")"]]]], ",", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["j", "+", "m", "-", SubscriptBox["j", "2"], "+", SubscriptBox["mm", "2"]]], ")"]]]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["j", "+", SubscriptBox["j", "2"], "-", SubscriptBox["mm", "1"]]], ")"]]]], ",", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "j"]], "+", "m", "+", SubscriptBox["j", "2"], "+", SubscriptBox["mm", "2"]]], ")"]]]]]], "}"]]]], "]"]], " ", RowBox[List["Csc", "[", RowBox[List[RowBox[List["(", RowBox[List["j", "+", "m"]], ")"]], " ", "\[Pi]"]], "]"]], " ", RowBox[List["Csc", "[", RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List["j", "+", SubscriptBox["j", "1"], "-", SubscriptBox["j", "2"]]], ")"]]]], "]"]], " ", RowBox[List["Csc", "[", RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List[SubscriptBox["j", "1"], "+", SubscriptBox["mm", "1"]]], ")"]]]], "]"]], " ", RowBox[List["Sin", "[", RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List["j", "-", SubscriptBox["j", "1"], "-", SubscriptBox["j", "2"]]], ")"]]]], "]"]], " ", RowBox[List["Sin", "[", RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List[SubscriptBox["j", "1"], "-", SubscriptBox["mm", "1"]]], ")"]]]], "]"]], " ", RowBox[List["Sin", "[", RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List[SubscriptBox["j", "2"], "+", SubscriptBox["mm", "2"]]], ")"]]]], "]"]]]], SqrtBox[RowBox[List["1", "+", "j", "+", SubscriptBox["j", "2"], "-", SubscriptBox["mm", "1"]]]]]]], "/;", RowBox[List[RowBox[List[RowBox[List["Re", "[", RowBox[List["j", "+", SubscriptBox["j", "1"], "+", SubscriptBox["j", "2"]]], "]"]], ">", RowBox[List["-", "2"]]]], "&&", RowBox[List[RowBox[List["Re", "[", RowBox[List["j", "+", SubscriptBox["j", "1"], "-", SubscriptBox["j", "2"]]], "]"]], "<", "0"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29





© 1998-2014 Wolfram Research, Inc.