Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
Fibonacci






Mathematica Notation

Traditional Notation









Hypergeometric Functions > Fibonacci[nu,z] > Identities > Recurrence identities > Distant neighbors





http://functions.wolfram.com/07.06.17.0004.01









  


  










Input Form





Fibonacci[\[Nu], z] == (-1)^Floor[m/2] z^(m - 2 Floor[m/2]) (-z^2)^((1 - m)/2 + Floor[m/2]) ChebyshevU[(m - 1)/2, -1 - z^2/2] Fibonacci[\[Nu] - m, z] + (-1)^Floor[(m - 1)/2] z^(1 - m + 2 Floor[m/2]) (-z^2)^(Floor[(1 + m)/2] - m/2) ChebyshevU[m/2 - 1, -1 - z^2/2] Fibonacci[\[Nu] - m - 1, z] /; Element[m, Integers] && m > 0










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["Fibonacci", "[", RowBox[List["\[Nu]", ",", "z"]], "]"]], "\[Equal]", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["Floor", "[", FractionBox["m", "2"], "]"]]], " ", SuperscriptBox["z", RowBox[List["m", "-", RowBox[List["2", " ", RowBox[List["Floor", "[", FractionBox["m", "2"], "]"]]]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", SuperscriptBox["z", "2"]]], ")"]], RowBox[List[FractionBox[RowBox[List["1", "-", "m"]], "2"], "+", RowBox[List["Floor", "[", FractionBox["m", "2"], "]"]]]]], " ", RowBox[List["ChebyshevU", "[", RowBox[List[FractionBox[RowBox[List["m", "-", "1"]], "2"], ",", RowBox[List[RowBox[List["-", "1"]], "-", FractionBox[SuperscriptBox["z", "2"], "2"]]]]], "]"]], " ", RowBox[List["Fibonacci", "[", RowBox[List[RowBox[List["\[Nu]", "-", "m"]], ",", "z"]], "]"]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["Floor", "[", FractionBox[RowBox[List["m", "-", "1"]], "2"], "]"]]], " ", SuperscriptBox["z", RowBox[List["1", "-", "m", "+", RowBox[List["2", " ", RowBox[List["Floor", "[", FractionBox["m", "2"], "]"]]]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", SuperscriptBox["z", "2"]]], ")"]], RowBox[List[RowBox[List["Floor", "[", FractionBox[RowBox[List["1", "+", "m"]], "2"], "]"]], "-", FractionBox["m", "2"]]]], " ", RowBox[List["ChebyshevU", "[", RowBox[List[RowBox[List[FractionBox["m", "2"], "-", "1"]], ",", RowBox[List[RowBox[List["-", "1"]], "-", FractionBox[SuperscriptBox["z", "2"], "2"]]]]], "]"]], RowBox[List["Fibonacci", "[", RowBox[List[RowBox[List["\[Nu]", "-", "m", "-", "1"]], ",", "z"]], "]"]]]]]]]], "/;", RowBox[List[RowBox[List["m", "\[Element]", "Integers"]], "\[And]", RowBox[List["m", ">", "0"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msub> <semantics> <mi> F </mi> <annotation encoding='Mathematica'> TagBox[&quot;F&quot;, Fibonacci] </annotation> </semantics> <mi> &#957; </mi> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mtext> </mtext> <mrow> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> &#8970; </mo> <mfrac> <mi> m </mi> <mn> 2 </mn> </mfrac> <mo> &#8971; </mo> </mrow> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> &#8970; </mo> <mfrac> <mi> m </mi> <mn> 2 </mn> </mfrac> <mo> &#8971; </mo> </mrow> </mrow> </mrow> </msup> <mo> &#8290; </mo> <mtext> </mtext> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mrow> <mfrac> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> m </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> + </mo> <mrow> <mo> &#8970; </mo> <mfrac> <mi> m </mi> <mn> 2 </mn> </mfrac> <mo> &#8971; </mo> </mrow> </mrow> </msup> <mo> &#8290; </mo> <mrow> <msub> <mi> U </mi> <mfrac> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> </msub> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mn> 2 </mn> </mfrac> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msub> <semantics> <mi> F </mi> <annotation encoding='Mathematica'> TagBox[&quot;F&quot;, Fibonacci] </annotation> </semantics> <mrow> <mi> &#957; </mi> <mo> - </mo> <mi> m </mi> </mrow> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> &#8970; </mo> <mfrac> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> &#8971; </mo> </mrow> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> m </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> &#8970; </mo> <mfrac> <mi> m </mi> <mn> 2 </mn> </mfrac> <mo> &#8971; </mo> </mrow> </mrow> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> &#8970; </mo> <mfrac> <mrow> <mi> m </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> &#8971; </mo> </mrow> <mo> - </mo> <mfrac> <mi> m </mi> <mn> 2 </mn> </mfrac> </mrow> </msup> <mo> &#8290; </mo> <mrow> <msub> <mi> U </mi> <mrow> <mfrac> <mi> m </mi> <mn> 2 </mn> </mfrac> <mo> - </mo> <mn> 1 </mn> </mrow> </msub> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mn> 2 </mn> </mfrac> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msub> <semantics> <mi> F </mi> <annotation encoding='Mathematica'> TagBox[&quot;F&quot;, Fibonacci] </annotation> </semantics> <mrow> <mi> &#957; </mi> <mo> - </mo> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> m </mi> <mo> &#8712; </mo> <msup> <mi> &#8469; </mi> <mo> + </mo> </msup> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> Fibonacci </ci> <ci> &#957; </ci> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <floor /> <apply> <times /> <ci> m </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <floor /> <apply> <times /> <ci> m </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <floor /> <apply> <times /> <ci> m </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <ci> ChebyshevU </ci> <apply> <times /> <apply> <plus /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> Fibonacci </ci> <apply> <plus /> <ci> &#957; </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> <ci> z </ci> </apply> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <floor /> <apply> <times /> <apply> <plus /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <floor /> <apply> <times /> <ci> m </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <plus /> <apply> <floor /> <apply> <times /> <apply> <plus /> <ci> m </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> m </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <ci> ChebyshevU </ci> <apply> <plus /> <apply> <times /> <ci> m </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> Fibonacci </ci> <apply> <plus /> <ci> &#957; </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> <cn type='integer'> -1 </cn> </apply> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <in /> <ci> m </ci> <apply> <ci> SuperPlus </ci> <ci> &#8469; </ci> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Fibonacci", "[", RowBox[List["\[Nu]_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["Floor", "[", FractionBox["m", "2"], "]"]]], " ", SuperscriptBox["z", RowBox[List["m", "-", RowBox[List["2", " ", RowBox[List["Floor", "[", FractionBox["m", "2"], "]"]]]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", SuperscriptBox["z", "2"]]], ")"]], RowBox[List[FractionBox[RowBox[List["1", "-", "m"]], "2"], "+", RowBox[List["Floor", "[", FractionBox["m", "2"], "]"]]]]], " ", RowBox[List["ChebyshevU", "[", RowBox[List[FractionBox[RowBox[List["m", "-", "1"]], "2"], ",", RowBox[List[RowBox[List["-", "1"]], "-", FractionBox[SuperscriptBox["z", "2"], "2"]]]]], "]"]], " ", RowBox[List["Fibonacci", "[", RowBox[List[RowBox[List["\[Nu]", "-", "m"]], ",", "z"]], "]"]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["Floor", "[", FractionBox[RowBox[List["m", "-", "1"]], "2"], "]"]]], " ", SuperscriptBox["z", RowBox[List["1", "-", "m", "+", RowBox[List["2", " ", RowBox[List["Floor", "[", FractionBox["m", "2"], "]"]]]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", SuperscriptBox["z", "2"]]], ")"]], RowBox[List[RowBox[List["Floor", "[", FractionBox[RowBox[List["1", "+", "m"]], "2"], "]"]], "-", FractionBox["m", "2"]]]], " ", RowBox[List["ChebyshevU", "[", RowBox[List[RowBox[List[FractionBox["m", "2"], "-", "1"]], ",", RowBox[List[RowBox[List["-", "1"]], "-", FractionBox[SuperscriptBox["z", "2"], "2"]]]]], "]"]], " ", RowBox[List["Fibonacci", "[", RowBox[List[RowBox[List["\[Nu]", "-", "m", "-", "1"]], ",", "z"]], "]"]]]]]], "/;", RowBox[List[RowBox[List["m", "\[Element]", "Integers"]], "&&", RowBox[List["m", ">", "0"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29





© 1998-2014 Wolfram Research, Inc.