Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
Fibonacci






Mathematica Notation

Traditional Notation









Hypergeometric Functions > Fibonacci[nu,z] > Integration > Indefinite integration > Involving one direct function and elementary functions with respect to nu > Involving power function





http://functions.wolfram.com/07.06.21.0005.01









  


  










Input Form





Integrate[\[Nu]^(\[Alpha] - 1) Fibonacci[\[Nu], z], \[Nu]] == (1/(2 Sqrt[4 + z^2])) (\[Nu]^\[Alpha] ((-2 Gamma[\[Alpha], (-\[Nu]) Log[(1/2) (z + Sqrt[4 + z^2])]])/ ((-\[Nu]) Log[(1/2) (z + Sqrt[4 + z^2])])^\[Alpha] + Gamma[\[Alpha], \[Nu] ((-I) Pi + Log[(1/2) (z + Sqrt[4 + z^2])])]/ (\[Nu] ((-I) Pi + Log[(1/2) (z + Sqrt[4 + z^2])]))^\[Alpha] + Gamma[\[Alpha], \[Nu] (I Pi + Log[(1/2) (z + Sqrt[4 + z^2])])]/ (\[Nu] (I Pi + Log[(1/2) (z + Sqrt[4 + z^2])]))^\[Alpha]))










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[SuperscriptBox["\[Nu]", RowBox[List["\[Alpha]", "-", "1"]]], RowBox[List["Fibonacci", "[", RowBox[List["\[Nu]", ",", "z"]], "]"]], RowBox[List["\[DifferentialD]", "\[Nu]"]]]]]], "\[Equal]", RowBox[List[FractionBox["1", RowBox[List["2", " ", SqrtBox[RowBox[List["4", "+", SuperscriptBox["z", "2"]]]]]]], RowBox[List["(", RowBox[List[SuperscriptBox["\[Nu]", "\[Alpha]"], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", RowBox[List["Gamma", "[", RowBox[List["\[Alpha]", ",", RowBox[List[RowBox[List["-", "\[Nu]"]], " ", RowBox[List["Log", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["z", "+", SqrtBox[RowBox[List["4", "+", SuperscriptBox["z", "2"]]]]]], ")"]]]], "]"]]]]]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "\[Nu]"]], " ", RowBox[List["Log", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["z", "+", SqrtBox[RowBox[List["4", "+", SuperscriptBox["z", "2"]]]]]], ")"]]]], "]"]]]], ")"]], RowBox[List["-", "\[Alpha]"]]]]], "+", RowBox[List[RowBox[List["Gamma", "[", RowBox[List["\[Alpha]", ",", RowBox[List["\[Nu]", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "\[Pi]"]], "+", RowBox[List["Log", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["z", "+", SqrtBox[RowBox[List["4", "+", SuperscriptBox["z", "2"]]]]]], ")"]]]], "]"]]]], ")"]]]]]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["\[Nu]", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "\[Pi]"]], "+", RowBox[List["Log", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["z", "+", SqrtBox[RowBox[List["4", "+", SuperscriptBox["z", "2"]]]]]], ")"]]]], "]"]]]], ")"]]]], ")"]], RowBox[List["-", "\[Alpha]"]]]]], "+", RowBox[List[RowBox[List["Gamma", "[", RowBox[List["\[Alpha]", ",", RowBox[List["\[Nu]", " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "\[Pi]"]], "+", RowBox[List["Log", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["z", "+", SqrtBox[RowBox[List["4", "+", SuperscriptBox["z", "2"]]]]]], ")"]]]], "]"]]]], ")"]]]]]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["\[Nu]", " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "\[Pi]"]], "+", RowBox[List["Log", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["z", "+", SqrtBox[RowBox[List["4", "+", SuperscriptBox["z", "2"]]]]]], ")"]]]], "]"]]]], ")"]]]], ")"]], RowBox[List["-", "\[Alpha]"]]]]]]], ")"]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> &#8747; </mo> <mrow> <mrow> <msup> <mi> &#957; </mi> <mrow> <mi> &#945; </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <mrow> <msub> <semantics> <mi> F </mi> <annotation encoding='Mathematica'> TagBox[&quot;F&quot;, Fibonacci] </annotation> </semantics> <mi> &#957; </mi> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> &#957; </mi> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 4 </mn> </mrow> </msqrt> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> &#957; </mi> <mi> &#945; </mi> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#945; </mi> <mo> , </mo> <mrow> <mrow> <mo> - </mo> <mi> &#957; </mi> </mrow> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> + </mo> <msqrt> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 4 </mn> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> &#957; </mi> </mrow> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> + </mo> <msqrt> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 4 </mn> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mi> &#945; </mi> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#945; </mi> <mo> , </mo> <mrow> <mi> &#957; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mi> &#8520; </mi> </mrow> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> + </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> + </mo> <msqrt> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 4 </mn> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> &#957; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mi> &#8520; </mi> </mrow> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> + </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> + </mo> <msqrt> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 4 </mn> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mi> &#945; </mi> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#945; </mi> <mo> , </mo> <mrow> <mi> &#957; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> + </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> + </mo> <msqrt> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 4 </mn> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> &#957; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> + </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> + </mo> <msqrt> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 4 </mn> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mi> &#945; </mi> </mrow> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> &#957; </ci> </bvar> <apply> <times /> <apply> <power /> <ci> &#957; </ci> <apply> <plus /> <ci> &#945; </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> Fibonacci </ci> <ci> &#957; </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 4 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <ci> &#957; </ci> <ci> &#945; </ci> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <apply> <ci> Gamma </ci> <ci> &#945; </ci> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> <apply> <ln /> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <ci> z </ci> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 4 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> <apply> <ln /> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <ci> z </ci> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 4 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#945; </ci> </apply> </apply> </apply> <apply> <times /> <apply> <ci> Gamma </ci> <ci> &#945; </ci> <apply> <times /> <ci> &#957; </ci> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <pi /> </apply> <apply> <ln /> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <ci> z </ci> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 4 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <ci> &#957; </ci> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <pi /> </apply> <apply> <ln /> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <ci> z </ci> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 4 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#945; </ci> </apply> </apply> </apply> <apply> <times /> <apply> <ci> Gamma </ci> <ci> &#945; </ci> <apply> <times /> <ci> &#957; </ci> <apply> <plus /> <apply> <times /> <imaginaryi /> <pi /> </apply> <apply> <ln /> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <ci> z </ci> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 4 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <ci> &#957; </ci> <apply> <plus /> <apply> <times /> <imaginaryi /> <pi /> </apply> <apply> <ln /> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <ci> z </ci> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 4 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#945; </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List[SuperscriptBox["\[Nu]_", RowBox[List["\[Alpha]_", "-", "1"]]], " ", RowBox[List["Fibonacci", "[", RowBox[List["\[Nu]_", ",", "z_"]], "]"]]]], RowBox[List["\[DifferentialD]", "\[Nu]_"]]]]]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[SuperscriptBox["\[Nu]", "\[Alpha]"], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", RowBox[List["Gamma", "[", RowBox[List["\[Alpha]", ",", RowBox[List[RowBox[List["-", "\[Nu]"]], " ", RowBox[List["Log", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["z", "+", SqrtBox[RowBox[List["4", "+", SuperscriptBox["z", "2"]]]]]], ")"]]]], "]"]]]]]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "\[Nu]"]], " ", RowBox[List["Log", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["z", "+", SqrtBox[RowBox[List["4", "+", SuperscriptBox["z", "2"]]]]]], ")"]]]], "]"]]]], ")"]], RowBox[List["-", "\[Alpha]"]]]]], "+", RowBox[List[RowBox[List["Gamma", "[", RowBox[List["\[Alpha]", ",", RowBox[List["\[Nu]", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "\[Pi]"]], "+", RowBox[List["Log", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["z", "+", SqrtBox[RowBox[List["4", "+", SuperscriptBox["z", "2"]]]]]], ")"]]]], "]"]]]], ")"]]]]]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["\[Nu]", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "\[Pi]"]], "+", RowBox[List["Log", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["z", "+", SqrtBox[RowBox[List["4", "+", SuperscriptBox["z", "2"]]]]]], ")"]]]], "]"]]]], ")"]]]], ")"]], RowBox[List["-", "\[Alpha]"]]]]], "+", RowBox[List[RowBox[List["Gamma", "[", RowBox[List["\[Alpha]", ",", RowBox[List["\[Nu]", " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "\[Pi]"]], "+", RowBox[List["Log", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["z", "+", SqrtBox[RowBox[List["4", "+", SuperscriptBox["z", "2"]]]]]], ")"]]]], "]"]]]], ")"]]]]]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["\[Nu]", " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "\[Pi]"]], "+", RowBox[List["Log", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["z", "+", SqrtBox[RowBox[List["4", "+", SuperscriptBox["z", "2"]]]]]], ")"]]]], "]"]]]], ")"]]]], ")"]], RowBox[List["-", "\[Alpha]"]]]]]]], ")"]]]], RowBox[List["2", " ", SqrtBox[RowBox[List["4", "+", SuperscriptBox["z", "2"]]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29





© 1998- Wolfram Research, Inc.