Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
GegenbauerC






Mathematica Notation

Traditional Notation









Hypergeometric Functions > GegenbauerC[nu,z] > Differentiation > Symbolic differentiation > With respect to nu





http://functions.wolfram.com/07.13.20.0007.02









  


  










Input Form





D[GegenbauerC[\[Nu], z], {\[Nu], m}] == 2 (-1)^m m! Sum[(((-I)^k \[Nu]^(k - m - 1) ArcCos[z]^k)/k!) (ChebyshevT[\[Nu], z] - (ChebyshevT[\[Nu], z] - I Sqrt[1 - z^2] ChebyshevU[\[Nu] - 1, z]) Mod[k, 2]), {k, 0, m}] /; Element[m, Integers] && m >= 0










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[SubscriptBox["\[PartialD]", RowBox[List["{", RowBox[List["\[Nu]", ",", "m"]], "}"]]], RowBox[List["GegenbauerC", "[", RowBox[List["\[Nu]", ",", "z"]], "]"]]]], "\[Equal]", RowBox[List["2", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "m"], " ", RowBox[List["m", "!"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "m"], RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "\[ImaginaryI]"]], ")"]], "k"], " ", SuperscriptBox["\[Nu]", RowBox[List["k", "-", "m", "-", "1"]]], SuperscriptBox[RowBox[List["ArcCos", "[", "z", "]"]], "k"], " "]], RowBox[List["k", "!"]]], RowBox[List["(", RowBox[List[RowBox[List["ChebyshevT", "[", RowBox[List["\[Nu]", ",", "z"]], "]"]], "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["ChebyshevT", "[", RowBox[List["\[Nu]", ",", "z"]], "]"]], "-", RowBox[List["\[ImaginaryI]", " ", SqrtBox[RowBox[List["1", "-", SuperscriptBox["z", "2"]]]], " ", RowBox[List["ChebyshevU", "[", RowBox[List[RowBox[List["\[Nu]", "-", "1"]], ",", "z"]], "]"]]]]]], ")"]], " ", RowBox[List["Mod", "[", RowBox[List["k", ",", "2"]], "]"]]]]]], ")"]]]]]]]]]], "/;", RowBox[List[RowBox[List["m", "\[Element]", "Integers"]], "\[And]", RowBox[List["m", "\[GreaterEqual]", "0"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mfrac> <mrow> <msup> <mo> &#8706; </mo> <mi> m </mi> </msup> <mrow> <msubsup> <mi> C </mi> <mi> &#957; </mi> <mrow> <mo> ( </mo> <mn> 0 </mn> <mo> ) </mo> </mrow> </msubsup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mrow> <mo> &#8706; </mo> <msup> <mi> &#957; </mi> <mi> m </mi> </msup> </mrow> </mfrac> <mo> &#10869; </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> m </mi> </msup> <mo> &#8290; </mo> <mrow> <mi> m </mi> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> m </mi> </munderover> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mi> &#8520; </mi> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> <mo> &#8290; </mo> <msup> <mi> &#957; </mi> <mrow> <mi> k </mi> <mo> - </mo> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <msup> <mi> cos </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mi> k </mi> </msup> </mrow> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msub> <mi> T </mi> <mi> &#957; </mi> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <msub> <mi> T </mi> <mi> &#957; </mi> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <msub> <mi> U </mi> <mrow> <mi> &#957; </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <semantics> <mrow> <mi> k </mi> <mo> &#8290; </mo> <mi> mod </mi> <mo> &#8290; </mo> <mn> 2 </mn> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <rem /> <ci> $CellContext`k </ci> <cn type='integer'> 2 </cn> </apply> </annotation-xml> </semantics> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> m </mi> <mo> &#8712; </mo> <mi> &#8469; </mi> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <partialdiff /> <bvar> <ci> &#957; </ci> <degree> <ci> m </ci> </degree> </bvar> <apply> <ci> GegenbauerC </ci> <ci> &#957; </ci> <cn type='integer'> 0 </cn> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> <apply> <factorial /> <ci> m </ci> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> m </ci> </uplimit> <apply> <times /> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <ci> k </ci> </apply> <apply> <power /> <ci> &#957; </ci> <apply> <plus /> <ci> k </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <arccos /> <ci> z </ci> </apply> <ci> k </ci> </apply> <apply> <power /> <apply> <factorial /> <ci> k </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <ci> ChebyshevT </ci> <ci> &#957; </ci> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <ci> ChebyshevT </ci> <ci> &#957; </ci> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> ChebyshevU </ci> <apply> <plus /> <ci> &#957; </ci> <cn type='integer'> -1 </cn> </apply> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <rem /> <ci> $CellContext`k </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <in /> <ci> m </ci> <ci> &#8469; </ci> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List[RowBox[List["{", RowBox[List["\[Nu]_", ",", "m_"]], "}"]]]]], RowBox[List["GegenbauerC", "[", RowBox[List["\[Nu]_", ",", "z_"]], "]"]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["2", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "m"], " ", RowBox[List["m", "!"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "m"], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "\[ImaginaryI]"]], ")"]], "k"], " ", SuperscriptBox["\[Nu]", RowBox[List["k", "-", "m", "-", "1"]]], " ", SuperscriptBox[RowBox[List["ArcCos", "[", "z", "]"]], "k"]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["ChebyshevT", "[", RowBox[List["\[Nu]", ",", "z"]], "]"]], "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["ChebyshevT", "[", RowBox[List["\[Nu]", ",", "z"]], "]"]], "-", RowBox[List["\[ImaginaryI]", " ", SqrtBox[RowBox[List["1", "-", SuperscriptBox["z", "2"]]]], " ", RowBox[List["ChebyshevU", "[", RowBox[List[RowBox[List["\[Nu]", "-", "1"]], ",", "z"]], "]"]]]]]], ")"]], " ", RowBox[List["Mod", "[", RowBox[List["k", ",", "2"]], "]"]]]]]], ")"]]]], RowBox[List["k", "!"]]]]]]], "/;", RowBox[List[RowBox[List["m", "\[Element]", "Integers"]], "&&", RowBox[List["m", "\[GreaterEqual]", "0"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29





© 1998- Wolfram Research, Inc.