Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
GegenbauerC






Mathematica Notation

Traditional Notation









Hypergeometric Functions > GegenbauerC[nu,lambda,z] > General characteristics > Branch points > With respect to z





http://functions.wolfram.com/07.14.04.0015.01









  


  










Input Form





RamificationIndex[GegenbauerC[\[Nu], \[Lambda], z], z, ComplexInfinity] == LCM[s, u] /; \[Nu] == r/s && 2 \[Lambda] + \[Nu] == t/u && Element[{r, s, t, u}, Integers] && s > 1 && u > 1 && GCD[r, s] == 1 && GCD[t, u] == 1 && !((Element[\[Nu], Integers] && \[Nu] >= 0) || (Element[-2 \[Lambda] - \[Nu], Integers] && -2 \[Lambda] - \[Nu] >= 0))










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["RamificationIndex", "[", RowBox[List[RowBox[List["GegenbauerC", "[", RowBox[List["\[Nu]", ",", "\[Lambda]", ",", "z"]], "]"]], ",", "z", ",", "ComplexInfinity"]], "]"]], "\[Equal]", RowBox[List["LCM", "[", RowBox[List["s", ",", "u"]], "]"]]]], "/;", RowBox[List[RowBox[List["\[Nu]", "\[Equal]", FractionBox["r", "s"]]], "\[And]", RowBox[List[RowBox[List[RowBox[List["2", " ", "\[Lambda]"]], "+", "\[Nu]"]], "\[Equal]", FractionBox["t", "u"]]], "\[And]", RowBox[List["Element", "[", RowBox[List[RowBox[List["{", RowBox[List["r", ",", "s", ",", "t", ",", "u"]], "}"]], ",", "Integers"]], "]"]], "\[And]", RowBox[List["s", ">", "1"]], "\[And]", RowBox[List["u", ">", "1"]], "\[And]", RowBox[List[RowBox[List["GCD", "[", RowBox[List["r", ",", "s"]], "]"]], "\[Equal]", "1"]], "\[And]", RowBox[List[RowBox[List["GCD", "[", RowBox[List["t", ",", "u"]], "]"]], "\[Equal]", "1"]], "\[And]", RowBox[List["Not", "[", RowBox[List[RowBox[List[RowBox[List["Element", "[", RowBox[List["\[Nu]", ",", "Integers"]], "]"]], "\[And]", RowBox[List["\[Nu]", "\[GreaterEqual]", "0"]]]], "\[Or]", RowBox[List[RowBox[List["Element", "[", RowBox[List[RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "\[Lambda]"]], "-", "\[Nu]"]], ",", "Integers"]], "]"]], "\[And]", RowBox[List[RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "\[Lambda]"]], "-", "\[Nu]"]], "\[GreaterEqual]", "0"]]]]]], "]"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msub> <mi> &#8475; </mi> <mi> z </mi> </msub> <mo> ( </mo> <mrow> <semantics> <mrow> <msubsup> <mi> C </mi> <mi> &#957; </mi> <mi> &#955; </mi> </msubsup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[SubsuperscriptBox[&quot;C&quot;, &quot;\[Nu]&quot;, &quot;\[Lambda]&quot;], &quot;(&quot;, &quot;z&quot;, &quot;)&quot;]], Fibonacci] </annotation> </semantics> <mo> , </mo> <mover> <mi> &#8734; </mi> <mo> ~ </mo> </mover> </mrow> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <mi> lcm </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> s </mi> <mo> , </mo> <mi> u </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> &#957; </mi> <mo> &#10869; </mo> <mfrac> <mi> r </mi> <mi> s </mi> </mfrac> </mrow> <mo> &#8743; </mo> <mrow> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#955; </mi> </mrow> <mo> + </mo> <mi> &#957; </mi> </mrow> <mo> &#10869; </mo> <mfrac> <mi> t </mi> <mi> u </mi> </mfrac> </mrow> <mo> &#8743; </mo> <mrow> <mrow> <mo> { </mo> <mrow> <mi> r </mi> <mo> , </mo> <mi> s </mi> <mo> , </mo> <mi> t </mi> <mo> , </mo> <mi> u </mi> </mrow> <mo> } </mo> </mrow> <mo> &#8712; </mo> <semantics> <mi> &#8484; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubleStruckCapitalZ]&quot;, Function[Integers]] </annotation> </semantics> </mrow> <mo> &#8743; </mo> <mrow> <mi> s </mi> <mo> &gt; </mo> <mn> 1 </mn> </mrow> <mo> &#8743; </mo> <mrow> <mi> u </mi> <mo> &gt; </mo> <mn> 1 </mn> </mrow> <mo> &#8743; </mo> <mrow> <mrow> <mi> gcd </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> r </mi> <mo> , </mo> <mi> s </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mn> 1 </mn> </mrow> <mo> &#8743; </mo> <mrow> <mrow> <mi> gcd </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> t </mi> <mo> , </mo> <mi> u </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mn> 1 </mn> </mrow> <mo> &#8743; </mo> <mrow> <mo> &#172; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> &#957; </mi> <mo> &#8712; </mo> <mi> &#8469; </mi> </mrow> <mo> &#8744; </mo> <mrow> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> &#8290; </mo> <mi> &#955; </mi> </mrow> <mo> - </mo> <mi> &#957; </mi> </mrow> <mo> &#8712; </mo> <mi> &#8469; </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <apply> <ci> Subscript </ci> <ci> &#8475; </ci> <ci> z </ci> </apply> <apply> <ci> Fibonacci </ci> <apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> C </ci> <ci> &#957; </ci> </apply> <ci> &#955; </ci> </apply> <ci> z </ci> </apply> </apply> <apply> <ci> OverTilde </ci> <infinity /> </apply> </apply> <apply> <lcm /> <ci> s </ci> <ci> u </ci> </apply> </apply> <apply> <and /> <apply> <eq /> <ci> &#957; </ci> <apply> <times /> <ci> r </ci> <apply> <power /> <ci> s </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <eq /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#955; </ci> </apply> <ci> &#957; </ci> </apply> <apply> <times /> <ci> t </ci> <apply> <power /> <ci> u </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <in /> <list> <ci> r </ci> <ci> s </ci> <ci> t </ci> <ci> u </ci> </list> <integers /> </apply> <apply> <gt /> <ci> s </ci> <cn type='integer'> 1 </cn> </apply> <apply> <gt /> <ci> u </ci> <cn type='integer'> 1 </cn> </apply> <apply> <eq /> <apply> <gcd /> <ci> r </ci> <ci> s </ci> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <eq /> <apply> <gcd /> <ci> t </ci> <ci> u </ci> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <not /> <apply> <or /> <apply> <in /> <ci> &#957; </ci> <ci> &#8469; </ci> </apply> <apply> <in /> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> &#955; </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> <ci> &#8469; </ci> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["RamificationIndex", "[", RowBox[List[RowBox[List["GegenbauerC", "[", RowBox[List["\[Nu]_", ",", "\[Lambda]_", ",", "z_"]], "]"]], ",", "z_", ",", "ComplexInfinity"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["LCM", "[", RowBox[List["s", ",", "u"]], "]"]], "/;", RowBox[List[RowBox[List["\[Nu]", "\[Equal]", FractionBox["r", "s"]]], "&&", RowBox[List[RowBox[List[RowBox[List["2", " ", "\[Lambda]"]], "+", "\[Nu]"]], "\[Equal]", FractionBox["t", "u"]]], "&&", RowBox[List[RowBox[List["{", RowBox[List["r", ",", "s", ",", "t", ",", "u"]], "}"]], "\[Element]", "Integers"]], "&&", RowBox[List["s", ">", "1"]], "&&", RowBox[List["u", ">", "1"]], "&&", RowBox[List[RowBox[List["GCD", "[", RowBox[List["r", ",", "s"]], "]"]], "\[Equal]", "1"]], "&&", RowBox[List[RowBox[List["GCD", "[", RowBox[List["t", ",", "u"]], "]"]], "\[Equal]", "1"]], "&&", RowBox[List["!", RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["\[Nu]", "\[Element]", "Integers"]], "&&", RowBox[List["\[Nu]", "\[GreaterEqual]", "0"]]]], ")"]], "||", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "\[Lambda]"]], "-", "\[Nu]"]], "\[Element]", "Integers"]], "&&", RowBox[List[RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "\[Lambda]"]], "-", "\[Nu]"]], "\[GreaterEqual]", "0"]]]], ")"]]]], ")"]]]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29





© 1998- Wolfram Research, Inc.