Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
GegenbauerC






Mathematica Notation

Traditional Notation









Hypergeometric Functions > GegenbauerC[nu,lambda,z] > Series representations > Generalized power series > Expansions at z==infinity > For the function itself > Generic formulas for main term





http://functions.wolfram.com/07.14.06.0080.01









  


  










Input Form





GegenbauerC[\[Nu], \[Lambda], z] \[Proportional] Piecewise[{{0, (Element[-\[Nu], Integers] && -\[Nu] > 0) || (Element[-(1/2) - \[Lambda], Integers] && -(1/2) - \[Lambda] >= 0 && ((Element[-2 \[Lambda] - \[Nu], Integers] && -2 \[Lambda] - \[Nu] >= 0 && \[Lambda] + \[Nu] >= 1/2) || (Element[\[Nu], Integers] && \[Nu] >= 0 && \[Lambda] + \[Nu] <= -(1/2))))}, {ComplexInfinity, Element[-(1/2) - \[Lambda], Integers] && -(1/2) - \[Lambda] >= 0 && Element[-2 \[Lambda] - \[Nu], Integers] && -2 \[Lambda] - \[Nu] >= 0 && \[Lambda] + \[Nu] < 1/2}, {(2^\[Nu] z^\[Nu] Gamma[\[Lambda] + \[Nu]])/(Gamma[\[Lambda]] Gamma[1 + \[Nu]]) + ((2^(1 - 2 \[Lambda] - \[Nu]) Cos[Pi (\[Lambda] + \[Nu])] Gamma[2 \[Lambda] + \[Nu]] Sin[Pi \[Nu]] z^(-2 \[Lambda] - \[Nu]))/(Pi Gamma[\[Lambda]] Gamma[1 + \[Lambda] + \[Nu]])) (EulerGamma + Log[2] - Log[z] + PolyGamma[1/2 - \[Lambda] - \[Nu]] + PolyGamma[2 \[Lambda] + \[Nu]] - PolyGamma[1 + 2 \[Lambda] + 2 \[Nu]]), Element[2 (\[Lambda] + \[Nu]), Integers] && 2 (\[Lambda] + \[Nu]) > 0 && NotElement[1/2 + \[Lambda] + \[Nu], Integers]}, {((2^(1 + \[Nu]) z^\[Nu] Sin[Pi \[Nu]])/Pi) (EulerGamma - Log[2] - Log[z] + PolyGamma[-\[Nu]]), \[Lambda] + \[Nu] == 0}, {-((2^(-2 \[Lambda] - \[Nu]) Gamma[-\[Lambda] - \[Nu]] Gamma[2 \[Lambda] + \[Nu]] Sin[Pi \[Nu]] z^(-2 \[Lambda] - \[Nu]))/ (Pi Gamma[\[Lambda]])) - ((2^(1 + \[Nu]) Cos[Pi (\[Lambda] + \[Nu])] z^\[Nu])/(Gamma[\[Lambda]] Gamma[1 - \[Lambda] - \[Nu]] Gamma[1 + \[Nu]])) (EulerGamma + Log[2] - Log[z] - PolyGamma[1 - 2 \[Lambda] - 2 \[Nu]] + PolyGamma[-\[Nu]] + PolyGamma[1/2 + \[Lambda] + \[Nu]]), Element[-2 (\[Lambda] + \[Nu]), Integers] && -2 (\[Lambda] + \[Nu]) > 0 && NotElement[1/2 - \[Lambda] - \[Nu], Integers]}, {(2^\[Nu] Gamma[\[Lambda] + \[Nu]] z^\[Nu])/(Gamma[\[Lambda]] Gamma[1 + \[Nu]]), Element[-(1/2) - \[Lambda], Integers] && -(1/2) - \[Lambda] >= 0 && Element[\[Nu], Integers] && \[Nu] >= 0 && \[Lambda] + \[Nu] > -(1/2)}}, -((2^(-2 \[Lambda] - \[Nu]) Gamma[-\[Lambda] - \[Nu]] Gamma[2 \[Lambda] + \[Nu]] Sin[Pi \[Nu]] z^(-2 \[Lambda] - \[Nu]))/ (Pi Gamma[\[Lambda]])) + (2^\[Nu] Gamma[\[Lambda] + \[Nu]] z^\[Nu])/ (Gamma[\[Lambda]] Gamma[1 + \[Nu]])] /; (Abs[z] -> Infinity)










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["GegenbauerC", "[", RowBox[List["\[Nu]", ",", "\[Lambda]", ",", "z"]], "]"]], "\[Proportional]", RowBox[List["Piecewise", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["0", ",", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[Nu]"]], "\[Element]", "Integers"]], "\[And]", RowBox[List[RowBox[List["-", "\[Nu]"]], ">", "0"]]]], ")"]], "\[Or]", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "-", "\[Lambda]"]], "\[Element]", "Integers"]], "&&", RowBox[List[RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "-", "\[Lambda]"]], "\[GreaterEqual]", "0"]], "&&", RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "\[Lambda]"]], "-", "\[Nu]"]], "\[Element]", "Integers"]], "&&", RowBox[List[RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "\[Lambda]"]], "-", "\[Nu]"]], "\[GreaterEqual]", "0"]], "&&", RowBox[List[RowBox[List["\[Lambda]", "+", "\[Nu]"]], "\[GreaterEqual]", FractionBox["1", "2"]]]]], ")"]], "||", RowBox[List["(", RowBox[List[RowBox[List["\[Nu]", "\[Element]", "Integers"]], "&&", RowBox[List["\[Nu]", "\[GreaterEqual]", "0"]], "&&", RowBox[List[RowBox[List["\[Lambda]", "+", "\[Nu]"]], "\[LessEqual]", RowBox[List["-", FractionBox["1", "2"]]]]]]], ")"]]]], ")"]]]], ")"]]]]]], "}"]], ",", RowBox[List["{", RowBox[List["ComplexInfinity", " ", ",", RowBox[List[RowBox[List[RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "-", "\[Lambda]"]], "\[Element]", "Integers"]], "&&", RowBox[List[RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "-", "\[Lambda]"]], "\[GreaterEqual]", "0"]], "&&", RowBox[List[RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "\[Lambda]"]], "-", "\[Nu]"]], "\[Element]", "Integers"]], "&&", RowBox[List[RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "\[Lambda]"]], "-", "\[Nu]"]], "\[GreaterEqual]", "0"]], "&&", RowBox[List[RowBox[List["\[Lambda]", "+", "\[Nu]"]], "<", FractionBox["1", "2"]]]]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List[FractionBox[RowBox[List[SuperscriptBox["2", "\[Nu]"], " ", SuperscriptBox["z", "\[Nu]"], " ", RowBox[List["Gamma", "[", RowBox[List["\[Lambda]", "+", "\[Nu]"]], "]"]]]], RowBox[List[RowBox[List["Gamma", "[", "\[Lambda]", "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "+", "\[Nu]"]], "]"]]]]], "+", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["2", RowBox[List["1", "-", RowBox[List["2", " ", "\[Lambda]"]], "-", "\[Nu]"]]], " ", RowBox[List["Cos", "[", RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List["\[Lambda]", "+", "\[Nu]"]], ")"]]]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List["2", " ", "\[Lambda]"]], "+", "\[Nu]"]], "]"]], " ", RowBox[List["Sin", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]], " ", SuperscriptBox["z", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "\[Lambda]"]], "-", "\[Nu]"]]]]], RowBox[List["\[Pi]", " ", RowBox[List["Gamma", "[", "\[Lambda]", "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "+", "\[Lambda]", "+", "\[Nu]"]], "]"]]]]], RowBox[List["(", RowBox[List["EulerGamma", "+", RowBox[List["Log", "[", "2", "]"]], "-", RowBox[List["Log", "[", "z", "]"]], "+", RowBox[List["PolyGamma", "[", RowBox[List[FractionBox["1", "2"], "-", "\[Lambda]", "-", "\[Nu]"]], "]"]], "+", RowBox[List["PolyGamma", "[", RowBox[List[RowBox[List["2", " ", "\[Lambda]"]], "+", "\[Nu]"]], "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List["1", "+", RowBox[List["2", " ", "\[Lambda]"]], "+", RowBox[List["2", " ", "\[Nu]"]]]], "]"]]]], ")"]]]]]], ",", RowBox[List[RowBox[List[RowBox[List["2", " ", RowBox[List["(", RowBox[List["\[Lambda]", "+", "\[Nu]"]], ")"]]]], "\[Element]", "Integers"]], "&&", RowBox[List[RowBox[List["2", " ", RowBox[List["(", RowBox[List["\[Lambda]", "+", "\[Nu]"]], ")"]]]], ">", "0"]], "&&", RowBox[List[RowBox[List[FractionBox["1", "2"], "+", "\[Lambda]", "+", "\[Nu]"]], "\[NotElement]", "Integers"]]]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List[FractionBox[RowBox[List[SuperscriptBox["2", RowBox[List["1", "+", "\[Nu]"]]], " ", SuperscriptBox["z", "\[Nu]"], " ", RowBox[List["Sin", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]]]], "\[Pi]"], " ", RowBox[List["(", RowBox[List["EulerGamma", "-", RowBox[List["Log", "[", "2", "]"]], "-", RowBox[List["Log", "[", "z", "]"]], "+", RowBox[List["PolyGamma", "[", RowBox[List["-", "\[Nu]"]], "]"]]]], ")"]]]], ",", RowBox[List[RowBox[List["\[Lambda]", "+", "\[Nu]"]], "\[Equal]", "0"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List[RowBox[List["-", FractionBox[RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "\[Lambda]"]], "-", "\[Nu]"]]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List["-", "\[Lambda]"]], "-", "\[Nu]"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List["2", " ", "\[Lambda]"]], "+", "\[Nu]"]], "]"]], " ", RowBox[List["Sin", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]], " ", SuperscriptBox["z", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "\[Lambda]"]], "-", "\[Nu]"]]]]], RowBox[List["\[Pi]", " ", RowBox[List["Gamma", "[", "\[Lambda]", "]"]]]]]]], "-", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["2", RowBox[List["1", "+", "\[Nu]"]]], " ", RowBox[List["Cos", "[", RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List["\[Lambda]", "+", "\[Nu]"]], ")"]]]], "]"]], " ", SuperscriptBox["z", "\[Nu]"]]], RowBox[List[RowBox[List["Gamma", "[", "\[Lambda]", "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "-", "\[Lambda]", "-", "\[Nu]"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "+", "\[Nu]"]], "]"]]]]], " ", RowBox[List["(", RowBox[List["EulerGamma", "+", RowBox[List["Log", "[", "2", "]"]], "-", RowBox[List["Log", "[", "z", "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List["1", "-", RowBox[List["2", " ", "\[Lambda]"]], "-", RowBox[List["2", " ", "\[Nu]"]]]], "]"]], "+", RowBox[List["PolyGamma", "[", RowBox[List["-", "\[Nu]"]], "]"]], "+", RowBox[List["PolyGamma", "[", RowBox[List[FractionBox["1", "2"], "+", "\[Lambda]", "+", "\[Nu]"]], "]"]]]], ")"]]]]]], ",", RowBox[List[RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", RowBox[List["(", RowBox[List["\[Lambda]", "+", "\[Nu]"]], ")"]]]], "\[Element]", "Integers"]], "&&", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", RowBox[List["(", RowBox[List["\[Lambda]", "+", "\[Nu]"]], ")"]]]], ">", "0"]], "&&", RowBox[List[RowBox[List[FractionBox["1", "2"], "-", "\[Lambda]", "-", "\[Nu]"]], "\[NotElement]", "Integers"]]]]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["2", "\[Nu]"], " ", RowBox[List["Gamma", "[", RowBox[List["\[Lambda]", "+", "\[Nu]"]], "]"]], " ", SuperscriptBox["z", "\[Nu]"]]], RowBox[List[RowBox[List["Gamma", "[", "\[Lambda]", "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "+", "\[Nu]"]], "]"]]]]], ",", RowBox[List[RowBox[List[RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "-", "\[Lambda]"]], "\[Element]", "Integers"]], "&&", RowBox[List[RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "-", "\[Lambda]"]], "\[GreaterEqual]", "0"]], "&&", RowBox[List["\[Nu]", "\[Element]", "Integers"]], "&&", RowBox[List["\[Nu]", "\[GreaterEqual]", "0"]], "&&", RowBox[List[RowBox[List["\[Lambda]", "+", "\[Nu]"]], ">", RowBox[List["-", FractionBox["1", "2"]]]]]]]]], "}"]]]], "}"]], ",", RowBox[List[RowBox[List["-", FractionBox[RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "\[Lambda]"]], "-", "\[Nu]"]]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List["-", "\[Lambda]"]], "-", "\[Nu]"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List["2", " ", "\[Lambda]"]], "+", "\[Nu]"]], "]"]], " ", RowBox[List["Sin", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]], " ", SuperscriptBox["z", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "\[Lambda]"]], "-", "\[Nu]"]]]]], RowBox[List["\[Pi]", " ", RowBox[List["Gamma", "[", "\[Lambda]", "]"]]]]]]], "+", FractionBox[RowBox[List[SuperscriptBox["2", "\[Nu]"], " ", RowBox[List["Gamma", "[", RowBox[List["\[Lambda]", "+", "\[Nu]"]], "]"]], " ", SuperscriptBox["z", "\[Nu]"]]], RowBox[List[RowBox[List["Gamma", "[", "\[Lambda]", "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "+", "\[Nu]"]], "]"]]]]]]]]], "]"]]]], "/;", RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "\[Rule]", "\[Infinity]"]], ")"]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msubsup> <mi> C </mi> <mi> &#957; </mi> <mi> &#955; </mi> </msubsup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#8733; </mo> <mrow> <mo> &#62305; </mo> <mtable> <mtr> <mtd> <mn> 0 </mn> </mtd> <mtd> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> &#957; </mi> </mrow> <mo> &#8712; </mo> <msup> <mi> &#8469; </mi> <mo> + </mo> </msup> </mrow> <mo> ) </mo> </mrow> <mo> &#8744; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mrow> <mo> - </mo> <mi> &#955; </mi> </mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> &#8712; </mo> <mi> &#8469; </mi> </mrow> <mo> &#8743; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> &#8290; </mo> <mi> &#955; </mi> </mrow> <mo> - </mo> <mi> &#957; </mi> </mrow> <mo> &#8712; </mo> <mi> &#8469; </mi> </mrow> <mo> &#8743; </mo> <mrow> <mrow> <mi> &#955; </mi> <mo> + </mo> <mi> &#957; </mi> </mrow> <mo> &#8805; </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8744; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> &#957; </mi> <mo> &#8712; </mo> <mi> &#8469; </mi> </mrow> <mo> &#8743; </mo> <mrow> <mrow> <mi> &#955; </mi> <mo> + </mo> <mi> &#957; </mi> </mrow> <mo> &#8804; </mo> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mover> <mi> &#8734; </mi> <mo> ~ </mo> </mover> </mtd> <mtd> <mrow> <mrow> <mrow> <mrow> <mo> - </mo> <mi> &#955; </mi> </mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> &#8712; </mo> <mi> &#8469; </mi> </mrow> <mo> &#8743; </mo> <mrow> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> &#8290; </mo> <mi> &#955; </mi> </mrow> <mo> - </mo> <mi> &#957; </mi> </mrow> <mo> &#8712; </mo> <mi> &#8469; </mi> </mrow> <mo> &#8743; </mo> <mrow> <mrow> <mi> &#955; </mi> <mo> + </mo> <mi> &#957; </mi> </mrow> <mo> &lt; </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mfrac> <mrow> <msup> <mn> 2 </mn> <mi> &#957; </mi> </msup> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#955; </mi> <mo> + </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mi> &#957; </mi> </msup> </mrow> <mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> &#955; </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#957; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> + </mo> <mfrac> <mrow> <msup> <mn> 2 </mn> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> &#8290; </mo> <mi> &#955; </mi> </mrow> <mo> - </mo> <mi> &#957; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> &#955; </mi> <mo> + </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#955; </mi> </mrow> <mo> + </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> &#8290; </mo> <mi> &#955; </mi> </mrow> <mo> - </mo> <mi> &#957; </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mn> 2 </mn> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> - </mo> <mi> &#955; </mi> <mo> - </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#955; </mi> </mrow> <mo> + </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#955; </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <semantics> <mi> &#8509; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubledGamma]&quot;, Function[List[], EulerGamma]] </annotation> </semantics> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> &#955; </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#955; </mi> <mo> + </mo> <mi> &#957; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> </mtd> <mtd> <mrow> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> &#955; </mi> <mo> + </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#8712; </mo> <msup> <mi> &#8469; </mi> <mo> + </mo> </msup> </mrow> <mo> &#8743; </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> + </mo> <mi> &#955; </mi> <mo> + </mo> <mi> &#957; </mi> </mrow> <mo> &#8713; </mo> <semantics> <mi> &#8484; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubleStruckCapitalZ]&quot;, Function[List[], Integers]] </annotation> </semantics> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mfrac> <mrow> <msup> <mn> 2 </mn> <mrow> <mi> &#957; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mi> &#957; </mi> </msup> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mn> 2 </mn> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mo> - </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <semantics> <mi> &#8509; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubledGamma]&quot;, Function[List[], EulerGamma]] </annotation> </semantics> </mrow> <mo> ) </mo> </mrow> </mrow> <mi> &#960; </mi> </mfrac> </mtd> <mtd> <mrow> <mrow> <mi> &#955; </mi> <mo> + </mo> <mi> &#957; </mi> </mrow> <mo> &#63449; </mo> <mn> 0 </mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mrow> <mo> - </mo> <mfrac> <mrow> <msup> <mn> 2 </mn> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> &#8290; </mo> <mi> &#955; </mi> </mrow> <mo> - </mo> <mi> &#957; </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> &#955; </mi> </mrow> <mo> - </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#955; </mi> </mrow> <mo> + </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> &#8290; </mo> <mi> &#955; </mi> </mrow> <mo> - </mo> <mi> &#957; </mi> </mrow> </msup> </mrow> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> &#955; </mi> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> <mo> - </mo> <mfrac> <mrow> <msup> <mn> 2 </mn> <mrow> <mi> &#957; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> &#955; </mi> <mo> + </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mi> &#957; </mi> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mn> 2 </mn> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mo> - </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> &#955; </mi> <mo> + </mo> <mi> &#957; </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#955; </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <semantics> <mi> &#8509; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubledGamma]&quot;, Function[List[], EulerGamma]] </annotation> </semantics> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> &#955; </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> &#955; </mi> <mo> - </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#957; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> </mtd> <mtd> <mrow> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> &#955; </mi> <mo> + </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#8712; </mo> <msup> <mi> &#8469; </mi> <mo> + </mo> </msup> </mrow> <mo> &#8743; </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> - </mo> <mi> &#955; </mi> <mo> - </mo> <mi> &#957; </mi> </mrow> <mo> &#8713; </mo> <semantics> <mi> &#8484; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubleStruckCapitalZ]&quot;, Function[List[], Integers]] </annotation> </semantics> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mfrac> <mrow> <msup> <mn> 2 </mn> <mi> &#957; </mi> </msup> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#955; </mi> <mo> + </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mi> &#957; </mi> </msup> </mrow> <mrow> <mtext> </mtext> <mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> &#955; </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#957; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mfrac> </mtd> <mtd> <mrow> <mrow> <mrow> <mrow> <mo> - </mo> <mi> &#955; </mi> </mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> &#8712; </mo> <mi> &#8469; </mi> </mrow> <mo> &#8743; </mo> <mrow> <mi> &#957; </mi> <mo> &#8712; </mo> <mi> &#8469; </mi> </mrow> <mo> &#8743; </mo> <mrow> <mrow> <mi> &#955; </mi> <mo> + </mo> <mi> &#957; </mi> </mrow> <mo> &gt; </mo> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mfrac> <mrow> <msup> <mn> 2 </mn> <mi> &#957; </mi> </msup> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#955; </mi> <mo> + </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mi> &#957; </mi> </msup> </mrow> <mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> &#955; </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#957; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> - </mo> <mfrac> <mrow> <msup> <mn> 2 </mn> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> &#8290; </mo> <mi> &#955; </mi> </mrow> <mo> - </mo> <mi> &#957; </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> &#955; </mi> </mrow> <mo> - </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#955; </mi> </mrow> <mo> + </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> &#8290; </mo> <mi> &#955; </mi> </mrow> <mo> - </mo> <mi> &#957; </mi> </mrow> </msup> </mrow> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> &#955; </mi> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> </mtd> <mtd> <semantics> <mi> True </mi> <annotation encoding='Mathematica'> TagBox[&quot;True&quot;, &quot;PiecewiseDefault&quot;, Rule[AutoDelete, False], Rule[DeletionWarning, True]] </annotation> </semantics> </mtd> </mtr> </mtable> </mrow> </mrow> <mo> /; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <mi> z </mi> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> <semantics> <mo> &#8594; </mo> <annotation encoding='Mathematica'> &quot;\[Rule]&quot; </annotation> </semantics> <mi> &#8734; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <ci> Proportional </ci> <apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> C </ci> <ci> &#957; </ci> </apply> <ci> &#955; </ci> </apply> <ci> z </ci> </apply> <piecewise> <piece> <cn type='integer'> 0 </cn> <apply> <or /> <apply> <in /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> <apply> <ci> SuperPlus </ci> <ci> &#8469; </ci> </apply> </apply> <apply> <and /> <apply> <in /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#955; </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <ci> &#8469; </ci> </apply> <apply> <or /> <apply> <and /> <apply> <in /> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> &#955; </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> <ci> &#8469; </ci> </apply> <apply> <geq /> <apply> <plus /> <ci> &#955; </ci> <ci> &#957; </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <and /> <apply> <in /> <ci> &#957; </ci> <ci> &#8469; </ci> </apply> <apply> <leq /> <apply> <plus /> <ci> &#955; </ci> <ci> &#957; </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </piece> <piece> <apply> <ci> OverTilde </ci> <infinity /> </apply> <apply> <and /> <apply> <in /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#955; </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <ci> &#8469; </ci> </apply> <apply> <in /> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> &#955; </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> <ci> &#8469; </ci> </apply> <apply> <lt /> <apply> <plus /> <ci> &#955; </ci> <ci> &#957; </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </piece> <piece> <apply> <plus /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <ci> &#957; </ci> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> &#955; </ci> <ci> &#957; </ci> </apply> </apply> <apply> <power /> <ci> z </ci> <ci> &#957; </ci> </apply> <apply> <power /> <apply> <times /> <apply> <ci> Gamma </ci> <ci> &#955; </ci> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> &#957; </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> &#955; </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <cos /> <apply> <times /> <pi /> <apply> <plus /> <ci> &#955; </ci> <ci> &#957; </ci> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#955; </ci> </apply> <ci> &#957; </ci> </apply> </apply> <apply> <sin /> <apply> <times /> <pi /> <ci> &#957; </ci> </apply> </apply> <apply> <power /> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> &#955; </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> </apply> <apply> <plus /> <apply> <ln /> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ln /> <ci> z </ci> </apply> </apply> <apply> <ci> PolyGamma </ci> <apply> <plus /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#955; </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> </apply> <apply> <ci> PolyGamma </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#955; </ci> </apply> <ci> &#957; </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> PolyGamma </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#955; </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#957; </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <eulergamma /> </apply> <apply> <power /> <apply> <times /> <pi /> <apply> <ci> Gamma </ci> <ci> &#955; </ci> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> &#955; </ci> <ci> &#957; </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <and /> <apply> <in /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> &#955; </ci> <ci> &#957; </ci> </apply> </apply> <apply> <ci> SuperPlus </ci> <ci> &#8469; </ci> </apply> </apply> <apply> <notin /> <apply> <plus /> <cn type='rational'> 1 <sep /> 2 </cn> <ci> &#955; </ci> <ci> &#957; </ci> </apply> <integers /> </apply> </apply> </piece> <piece> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> &#957; </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <power /> <ci> z </ci> <ci> &#957; </ci> </apply> <apply> <sin /> <apply> <times /> <pi /> <ci> &#957; </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ln /> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ln /> <ci> z </ci> </apply> </apply> <apply> <ci> PolyGamma </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> <eulergamma /> </apply> <apply> <power /> <pi /> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <eq /> <apply> <plus /> <ci> &#955; </ci> <ci> &#957; </ci> </apply> <cn type='integer'> 0 </cn> </apply> </piece> <piece> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> &#955; </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#955; </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#955; </ci> </apply> <ci> &#957; </ci> </apply> </apply> <apply> <sin /> <apply> <times /> <pi /> <ci> &#957; </ci> </apply> </apply> <apply> <power /> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> &#955; </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <pi /> <apply> <ci> Gamma </ci> <ci> &#955; </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> &#957; </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <cos /> <apply> <times /> <pi /> <apply> <plus /> <ci> &#955; </ci> <ci> &#957; </ci> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <ci> &#957; </ci> </apply> <apply> <plus /> <apply> <ln /> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ln /> <ci> z </ci> </apply> </apply> <apply> <ci> PolyGamma </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> &#955; </ci> <ci> &#957; </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> PolyGamma </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#955; </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#957; </ci> </apply> </apply> </apply> </apply> </apply> <eulergamma /> </apply> <apply> <power /> <apply> <times /> <apply> <ci> Gamma </ci> <ci> &#955; </ci> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#955; </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> &#957; </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <in /> <apply> <times /> <cn type='integer'> -2 </cn> <apply> <plus /> <ci> &#955; </ci> <ci> &#957; </ci> </apply> </apply> <apply> <ci> SuperPlus </ci> <ci> &#8469; </ci> </apply> </apply> <apply> <notin /> <apply> <plus /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#955; </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> <integers /> </apply> </apply> </piece> <piece> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <ci> &#957; </ci> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> &#955; </ci> <ci> &#957; </ci> </apply> </apply> <apply> <power /> <ci> z </ci> <ci> &#957; </ci> </apply> <apply> <power /> <apply> <times /> <apply> <ci> Gamma </ci> <ci> &#955; </ci> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> &#957; </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <and /> <apply> <in /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#955; </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <ci> &#8469; </ci> </apply> <apply> <in /> <ci> &#957; </ci> <ci> &#8469; </ci> </apply> <apply> <gt /> <apply> <plus /> <ci> &#955; </ci> <ci> &#957; </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </piece> <otherwise> <apply> <plus /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <ci> &#957; </ci> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> &#955; </ci> <ci> &#957; </ci> </apply> </apply> <apply> <power /> <ci> z </ci> <ci> &#957; </ci> </apply> <apply> <power /> <apply> <times /> <apply> <ci> Gamma </ci> <ci> &#955; </ci> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> &#957; </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> &#955; </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#955; </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#955; </ci> </apply> <ci> &#957; </ci> </apply> </apply> <apply> <sin /> <apply> <times /> <pi /> <ci> &#957; </ci> </apply> </apply> <apply> <power /> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> &#955; </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <pi /> <apply> <ci> Gamma </ci> <ci> &#955; </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </otherwise> </piecewise> </apply> <apply> <ci> Rule </ci> <apply> <abs /> <ci> z </ci> </apply> <infinity /> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["GegenbauerC", "[", RowBox[List["\[Nu]_", ",", "\[Lambda]_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["\[Piecewise]", GridBox[List[List["0", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[Nu]"]], "\[Element]", "Integers"]], "&&", RowBox[List[RowBox[List["-", "\[Nu]"]], ">", "0"]]]], ")"]], "||", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "-", "\[Lambda]"]], "\[Element]", "Integers"]], "&&", RowBox[List[RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "-", "\[Lambda]"]], "\[GreaterEqual]", "0"]], "&&", RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "\[Lambda]"]], "-", "\[Nu]"]], "\[Element]", "Integers"]], "&&", RowBox[List[RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "\[Lambda]"]], "-", "\[Nu]"]], "\[GreaterEqual]", "0"]], "&&", RowBox[List[RowBox[List["\[Lambda]", "+", "\[Nu]"]], "\[GreaterEqual]", FractionBox["1", "2"]]]]], ")"]], "||", RowBox[List["(", RowBox[List[RowBox[List["\[Nu]", "\[Element]", "Integers"]], "&&", RowBox[List["\[Nu]", "\[GreaterEqual]", "0"]], "&&", RowBox[List[RowBox[List["\[Lambda]", "+", "\[Nu]"]], "\[LessEqual]", RowBox[List["-", FractionBox["1", "2"]]]]]]], ")"]]]], ")"]]]], ")"]]]]], List["ComplexInfinity", RowBox[List[RowBox[List[RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "-", "\[Lambda]"]], "\[Element]", "Integers"]], "&&", RowBox[List[RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "-", "\[Lambda]"]], "\[GreaterEqual]", "0"]], "&&", RowBox[List[RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "\[Lambda]"]], "-", "\[Nu]"]], "\[Element]", "Integers"]], "&&", RowBox[List[RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "\[Lambda]"]], "-", "\[Nu]"]], "\[GreaterEqual]", "0"]], "&&", RowBox[List[RowBox[List["\[Lambda]", "+", "\[Nu]"]], "<", FractionBox["1", "2"]]]]]], List[RowBox[List[FractionBox[RowBox[List[SuperscriptBox["2", "\[Nu]"], " ", SuperscriptBox["z", "\[Nu]"], " ", RowBox[List["Gamma", "[", RowBox[List["\[Lambda]", "+", "\[Nu]"]], "]"]]]], RowBox[List[RowBox[List["Gamma", "[", "\[Lambda]", "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "+", "\[Nu]"]], "]"]]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["2", RowBox[List["1", "-", RowBox[List["2", " ", "\[Lambda]"]], "-", "\[Nu]"]]], " ", RowBox[List["Cos", "[", RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List["\[Lambda]", "+", "\[Nu]"]], ")"]]]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List["2", " ", "\[Lambda]"]], "+", "\[Nu]"]], "]"]], " ", RowBox[List["Sin", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]], " ", SuperscriptBox["z", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "\[Lambda]"]], "-", "\[Nu]"]]]]], ")"]], " ", RowBox[List["(", RowBox[List["EulerGamma", "+", RowBox[List["Log", "[", "2", "]"]], "-", RowBox[List["Log", "[", "z", "]"]], "+", RowBox[List["PolyGamma", "[", RowBox[List[FractionBox["1", "2"], "-", "\[Lambda]", "-", "\[Nu]"]], "]"]], "+", RowBox[List["PolyGamma", "[", RowBox[List[RowBox[List["2", " ", "\[Lambda]"]], "+", "\[Nu]"]], "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List["1", "+", RowBox[List["2", " ", "\[Lambda]"]], "+", RowBox[List["2", " ", "\[Nu]"]]]], "]"]]]], ")"]]]], RowBox[List["\[Pi]", " ", RowBox[List["Gamma", "[", "\[Lambda]", "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "+", "\[Lambda]", "+", "\[Nu]"]], "]"]]]]]]], RowBox[List[RowBox[List[RowBox[List["2", " ", RowBox[List["(", RowBox[List["\[Lambda]", "+", "\[Nu]"]], ")"]]]], "\[Element]", "Integers"]], "&&", RowBox[List[RowBox[List["2", " ", RowBox[List["(", RowBox[List["\[Lambda]", "+", "\[Nu]"]], ")"]]]], ">", "0"]], "&&", RowBox[List[RowBox[List[FractionBox["1", "2"], "+", "\[Lambda]", "+", "\[Nu]"]], "\[NotElement]", "Integers"]]]]], List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["2", RowBox[List["1", "+", "\[Nu]"]]], " ", SuperscriptBox["z", "\[Nu]"], " ", RowBox[List["Sin", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List["EulerGamma", "-", RowBox[List["Log", "[", "2", "]"]], "-", RowBox[List["Log", "[", "z", "]"]], "+", RowBox[List["PolyGamma", "[", RowBox[List["-", "\[Nu]"]], "]"]]]], ")"]]]], "\[Pi]"], RowBox[List[RowBox[List["\[Lambda]", "+", "\[Nu]"]], "\[Equal]", "0"]]], List[RowBox[List[RowBox[List["-", FractionBox[RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "\[Lambda]"]], "-", "\[Nu]"]]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List["-", "\[Lambda]"]], "-", "\[Nu]"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List["2", " ", "\[Lambda]"]], "+", "\[Nu]"]], "]"]], " ", RowBox[List["Sin", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]], " ", SuperscriptBox["z", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "\[Lambda]"]], "-", "\[Nu]"]]]]], RowBox[List["\[Pi]", " ", RowBox[List["Gamma", "[", "\[Lambda]", "]"]]]]]]], "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["2", RowBox[List["1", "+", "\[Nu]"]]], " ", RowBox[List["Cos", "[", RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List["\[Lambda]", "+", "\[Nu]"]], ")"]]]], "]"]], " ", SuperscriptBox["z", "\[Nu]"]]], ")"]], " ", RowBox[List["(", RowBox[List["EulerGamma", "+", RowBox[List["Log", "[", "2", "]"]], "-", RowBox[List["Log", "[", "z", "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List["1", "-", RowBox[List["2", " ", "\[Lambda]"]], "-", RowBox[List["2", " ", "\[Nu]"]]]], "]"]], "+", RowBox[List["PolyGamma", "[", RowBox[List["-", "\[Nu]"]], "]"]], "+", RowBox[List["PolyGamma", "[", RowBox[List[FractionBox["1", "2"], "+", "\[Lambda]", "+", "\[Nu]"]], "]"]]]], ")"]]]], RowBox[List[RowBox[List["Gamma", "[", "\[Lambda]", "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "-", "\[Lambda]", "-", "\[Nu]"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "+", "\[Nu]"]], "]"]]]]]]], RowBox[List[RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", RowBox[List["(", RowBox[List["\[Lambda]", "+", "\[Nu]"]], ")"]]]], "\[Element]", "Integers"]], "&&", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", RowBox[List["(", RowBox[List["\[Lambda]", "+", "\[Nu]"]], ")"]]]], ">", "0"]], "&&", RowBox[List[RowBox[List[FractionBox["1", "2"], "-", "\[Lambda]", "-", "\[Nu]"]], "\[NotElement]", "Integers"]]]]], List[FractionBox[RowBox[List[SuperscriptBox["2", "\[Nu]"], " ", RowBox[List["Gamma", "[", RowBox[List["\[Lambda]", "+", "\[Nu]"]], "]"]], " ", SuperscriptBox["z", "\[Nu]"]]], RowBox[List[RowBox[List["Gamma", "[", "\[Lambda]", "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "+", "\[Nu]"]], "]"]]]]], RowBox[List[RowBox[List[RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "-", "\[Lambda]"]], "\[Element]", "Integers"]], "&&", RowBox[List[RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "-", "\[Lambda]"]], "\[GreaterEqual]", "0"]], "&&", RowBox[List["\[Nu]", "\[Element]", "Integers"]], "&&", RowBox[List["\[Nu]", "\[GreaterEqual]", "0"]], "&&", RowBox[List[RowBox[List["\[Lambda]", "+", "\[Nu]"]], ">", RowBox[List["-", FractionBox["1", "2"]]]]]]]], List[RowBox[List[RowBox[List["-", FractionBox[RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "\[Lambda]"]], "-", "\[Nu]"]]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List["-", "\[Lambda]"]], "-", "\[Nu]"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List["2", " ", "\[Lambda]"]], "+", "\[Nu]"]], "]"]], " ", RowBox[List["Sin", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]], " ", SuperscriptBox["z", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "\[Lambda]"]], "-", "\[Nu]"]]]]], RowBox[List["\[Pi]", " ", RowBox[List["Gamma", "[", "\[Lambda]", "]"]]]]]]], "+", FractionBox[RowBox[List[SuperscriptBox["2", "\[Nu]"], " ", RowBox[List["Gamma", "[", RowBox[List["\[Lambda]", "+", "\[Nu]"]], "]"]], " ", SuperscriptBox["z", "\[Nu]"]]], RowBox[List[RowBox[List["Gamma", "[", "\[Lambda]", "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "+", "\[Nu]"]], "]"]]]]]]], TagBox["True", "PiecewiseDefault", Rule[AutoDelete, False], Rule[DeletionWarning, True]]]], Rule[ColumnAlignments, List[Left]], Rule[ColumnSpacings, 1.2`], Rule[ColumnWidths, Automatic]]]], "/;", RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "\[Rule]", "\[Infinity]"]], ")"]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02





© 1998-2014 Wolfram Research, Inc.