Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
GegenbauerC






Mathematica Notation

Traditional Notation









Hypergeometric Functions > GegenbauerC[nu,lambda,z] > Identities > Recurrence identities > Consecutive neighbors > With respect to lambda





http://functions.wolfram.com/07.14.17.0009.01









  


  










Input Form





GegenbauerC[\[Nu], \[Lambda], z] == ((5 + 2 \[Nu] (-1 + z^2) + 2 z^2 (-1 + \[Lambda]) - 4 \[Lambda])/ (2 (-1 + z^2) (-1 + \[Lambda]))) GegenbauerC[\[Nu], \[Lambda] - 1, z] + (((-4 + \[Nu] + 2 \[Lambda]) (-3 + \[Nu] + 2 \[Lambda]))/ (4 (-1 + z^2) (2 + (-3 + \[Lambda]) \[Lambda]))) GegenbauerC[\[Nu], \[Lambda] - 2, z]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["GegenbauerC", "[", RowBox[List["\[Nu]", ",", "\[Lambda]", ",", "z"]], "]"]], "\[Equal]", RowBox[List[RowBox[List[FractionBox[RowBox[List["5", "+", RowBox[List["2", " ", "\[Nu]", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["z", "2"]]], ")"]]]], "+", RowBox[List["2", " ", SuperscriptBox["z", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "\[Lambda]"]], ")"]]]], "-", RowBox[List["4", " ", "\[Lambda]"]]]], RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["z", "2"]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "\[Lambda]"]], ")"]]]]], " ", RowBox[List["GegenbauerC", "[", RowBox[List["\[Nu]", ",", RowBox[List["\[Lambda]", "-", "1"]], ",", "z"]], "]"]]]], "+", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "4"]], "+", "\[Nu]", "+", RowBox[List["2", " ", "\[Lambda]"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "3"]], "+", "\[Nu]", "+", RowBox[List["2", " ", "\[Lambda]"]]]], ")"]], " "]], RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["z", "2"]]], ")"]], " ", RowBox[List["(", RowBox[List["2", "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "3"]], "+", "\[Lambda]"]], ")"]], " ", "\[Lambda]"]]]], ")"]]]]], RowBox[List["GegenbauerC", "[", RowBox[List["\[Nu]", ",", RowBox[List["\[Lambda]", "-", "2"]], ",", "z"]], "]"]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msubsup> <mi> C </mi> <mi> &#957; </mi> <mi> &#955; </mi> </msubsup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#63449; </mo> <mrow> <mrow> <mfrac> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> &#955; </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#957; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> &#955; </mi> </mrow> <mo> + </mo> <mn> 5 </mn> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> &#955; </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <msubsup> <mi> C </mi> <mi> &#957; </mi> <mrow> <mi> &#955; </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msubsup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> &#957; </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#955; </mi> </mrow> <mo> - </mo> <mn> 4 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> &#957; </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#955; </mi> </mrow> <mo> - </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> &#955; </mi> <mo> - </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> &#955; </mi> </mrow> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <msubsup> <mi> C </mi> <mi> &#957; </mi> <mrow> <mi> &#955; </mi> <mo> - </mo> <mn> 2 </mn> </mrow> </msubsup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> C </ci> <ci> &#957; </ci> </apply> <ci> &#955; </ci> </apply> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> &#955; </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#957; </ci> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <ci> &#955; </ci> </apply> </apply> <cn type='integer'> 5 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <plus /> <ci> &#955; </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> C </ci> <ci> &#957; </ci> </apply> <apply> <plus /> <ci> &#955; </ci> <cn type='integer'> -1 </cn> </apply> </apply> <ci> z </ci> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <plus /> <ci> &#957; </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#955; </ci> </apply> <cn type='integer'> -4 </cn> </apply> <apply> <plus /> <ci> &#957; </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#955; </ci> </apply> <cn type='integer'> -3 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <ci> &#955; </ci> <cn type='integer'> -3 </cn> </apply> <ci> &#955; </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> C </ci> <ci> &#957; </ci> </apply> <apply> <plus /> <ci> &#955; </ci> <cn type='integer'> -2 </cn> </apply> </apply> <ci> z </ci> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["GegenbauerC", "[", RowBox[List["\[Nu]_", ",", "\[Lambda]_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List["5", "+", RowBox[List["2", " ", "\[Nu]", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["z", "2"]]], ")"]]]], "+", RowBox[List["2", " ", SuperscriptBox["z", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "\[Lambda]"]], ")"]]]], "-", RowBox[List["4", " ", "\[Lambda]"]]]], ")"]], " ", RowBox[List["GegenbauerC", "[", RowBox[List["\[Nu]", ",", RowBox[List["\[Lambda]", "-", "1"]], ",", "z"]], "]"]]]], RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["z", "2"]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "\[Lambda]"]], ")"]]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "4"]], "+", "\[Nu]", "+", RowBox[List["2", " ", "\[Lambda]"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "3"]], "+", "\[Nu]", "+", RowBox[List["2", " ", "\[Lambda]"]]]], ")"]]]], ")"]], " ", RowBox[List["GegenbauerC", "[", RowBox[List["\[Nu]", ",", RowBox[List["\[Lambda]", "-", "2"]], ",", "z"]], "]"]]]], RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["z", "2"]]], ")"]], " ", RowBox[List["(", RowBox[List["2", "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "3"]], "+", "\[Lambda]"]], ")"]], " ", "\[Lambda]"]]]], ")"]]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02





© 1998- Wolfram Research, Inc.