Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
HermiteH






Mathematica Notation

Traditional Notation









Hypergeometric Functions > HermiteH[nu,z] > Summation > Infinite summation





http://functions.wolfram.com/07.01.23.0009.01









  


  










Input Form





Sum[(Pochhammer[c + 1/2, n] HermiteH[2 n + 1, z] w^(2 n))/(2 n + 1)!, {n, 0, Infinity}] == 2 (1 + w^2)^(-(1/2) - c) z Hypergeometric1F1[1/2 + c, 3/2, (w^2 z^2)/(1 + w^2)]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["n", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["c", "+", FractionBox["1", "2"]]], ",", "n"]], "]"]], RowBox[List["HermiteH", "[", RowBox[List[RowBox[List[RowBox[List["2", "n"]], "+", "1"]], ",", "z"]], "]"]], " ", SuperscriptBox["w", RowBox[List["2", "n"]]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", "n"]], "+", "1"]], ")"]], "!"]]]]], "\[Equal]", RowBox[List["2", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", SuperscriptBox["w", "2"]]], ")"]], RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "-", "c"]]], " ", "z", " ", RowBox[List["Hypergeometric1F1", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], "+", "c"]], ",", FractionBox["3", "2"], ",", FractionBox[RowBox[List[SuperscriptBox["w", "2"], " ", SuperscriptBox["z", "2"]]], RowBox[List["1", "+", SuperscriptBox["w", "2"]]]]]], "]"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> n </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> &#8734; </mi> </munderover> <mfrac> <mrow> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mi> c </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mi> n </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, RowBox[List[&quot;c&quot;, &quot;+&quot;, FractionBox[&quot;1&quot;, &quot;2&quot;]]], &quot;)&quot;]], &quot;n&quot;], Pochhammer] </annotation> </semantics> <mo> &#8290; </mo> <mrow> <msub> <mi> H </mi> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> w </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> </msup> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mfrac> </mrow> <mo> &#10869; </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <msup> <mi> w </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> - </mo> <mi> c </mi> </mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> </msup> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 1 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> c </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ; </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> ; </mo> <mfrac> <mrow> <msup> <mi> w </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mrow> <msup> <mi> w </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;1&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;1&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[TagBox[RowBox[List[&quot;c&quot;, &quot;+&quot;, FractionBox[&quot;1&quot;, &quot;2&quot;]]], Hypergeometric1F1, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric1F1, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[TagBox[FractionBox[&quot;3&quot;, &quot;2&quot;], Hypergeometric1F1, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric1F1, Rule[Editable, False]], &quot;;&quot;, TagBox[FractionBox[RowBox[List[SuperscriptBox[&quot;w&quot;, &quot;2&quot;], &quot; &quot;, SuperscriptBox[&quot;z&quot;, &quot;2&quot;]]], RowBox[List[SuperscriptBox[&quot;w&quot;, &quot;2&quot;], &quot;+&quot;, &quot;1&quot;]]], Hypergeometric1F1, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric1F1] </annotation> </semantics> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <sum /> <bvar> <ci> n </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <ci> Pochhammer </ci> <apply> <plus /> <ci> c </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> n </ci> </apply> <apply> <ci> HermiteH </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <cn type='integer'> 1 </cn> </apply> <ci> z </ci> </apply> <apply> <power /> <ci> w </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> </apply> <apply> <power /> <apply> <factorial /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> w </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <ci> z </ci> <apply> <ci> Hypergeometric1F1 </ci> <apply> <plus /> <ci> c </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='rational'> 3 <sep /> 2 </cn> <apply> <times /> <apply> <power /> <ci> w </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> w </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["n_", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["c_", "+", FractionBox["1", "2"]]], ",", "n_"]], "]"]], " ", RowBox[List["HermiteH", "[", RowBox[List[RowBox[List[RowBox[List["2", " ", "n_"]], "+", "1"]], ",", "z_"]], "]"]], " ", SuperscriptBox["w_", RowBox[List["2", " ", "n_"]]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "n_"]], "+", "1"]], ")"]], "!"]]]]], "]"]], "\[RuleDelayed]", RowBox[List["2", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", SuperscriptBox["w", "2"]]], ")"]], RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "-", "c"]]], " ", "z", " ", RowBox[List["Hypergeometric1F1", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], "+", "c"]], ",", FractionBox["3", "2"], ",", FractionBox[RowBox[List[SuperscriptBox["w", "2"], " ", SuperscriptBox["z", "2"]]], RowBox[List["1", "+", SuperscriptBox["w", "2"]]]]]], "]"]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29





© 1998- Wolfram Research, Inc.