Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
Hypergeometric0F1






Mathematica Notation

Traditional Notation









Hypergeometric Functions > Hypergeometric0F1[b,z] > Specific values > For fixed z > For fixed z and b=m/3





http://functions.wolfram.com/07.17.03.0084.01









  


  










Input Form





Hypergeometric0F1[17/3, -z] == (1/(59049 3^(5/6) z^(14/3))) (3080 (-144 Sqrt[3] z^(2/3) (-55 + 18 z) AiryAi[(-3^(2/3)) z^(1/3)] + 3 (-1)^(1/3) 3^(1/6) (-1 + (-3)^(1/6)) (1 + (-3)^(1/6) + (-3)^(1/3)) (880 - 1080 z + 81 z^2) AiryAiPrime[(-3^(2/3)) z^(1/3)] - 144 z^(2/3) (-55 + 18 z) AiryBi[(-3^(2/3)) z^(1/3)] + (-1)^(1/3) 3^(1/6) (3 I - Sqrt[3]) (880 - 1080 z + 81 z^2) AiryBiPrime[(-3^(2/3)) z^(1/3)]) Gamma[-(1/3)])










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["Hypergeometric0F1", "[", RowBox[List[FractionBox["17", "3"], ",", RowBox[List["-", "z"]]]], "]"]], "\[Equal]", RowBox[List[FractionBox["1", RowBox[List["59049", " ", SuperscriptBox["3", RowBox[List["5", "/", "6"]]], " ", SuperscriptBox["z", RowBox[List["14", "/", "3"]]]]]], RowBox[List["(", RowBox[List["3080", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "144"]], " ", SqrtBox["3"], " ", SuperscriptBox["z", RowBox[List["2", "/", "3"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "55"]], "+", RowBox[List["18", " ", "z"]]]], ")"]], " ", RowBox[List["AiryAi", "[", RowBox[List[RowBox[List["-", SuperscriptBox["3", RowBox[List["2", "/", "3"]]]]], " ", SuperscriptBox["z", RowBox[List["1", "/", "3"]]]]], "]"]]]], "+", RowBox[List["3", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "3"]]], " ", SuperscriptBox["3", RowBox[List["1", "/", "6"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox[RowBox[List["(", RowBox[List["-", "3"]], ")"]], RowBox[List["1", "/", "6"]]]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", SuperscriptBox[RowBox[List["(", RowBox[List["-", "3"]], ")"]], RowBox[List["1", "/", "6"]]], "+", SuperscriptBox[RowBox[List["(", RowBox[List["-", "3"]], ")"]], RowBox[List["1", "/", "3"]]]]], ")"]], " ", RowBox[List["(", RowBox[List["880", "-", RowBox[List["1080", " ", "z"]], "+", RowBox[List["81", " ", SuperscriptBox["z", "2"]]]]], ")"]], " ", RowBox[List["AiryAiPrime", "[", RowBox[List[RowBox[List["-", SuperscriptBox["3", RowBox[List["2", "/", "3"]]]]], " ", SuperscriptBox["z", RowBox[List["1", "/", "3"]]]]], "]"]]]], "-", RowBox[List["144", " ", SuperscriptBox["z", RowBox[List["2", "/", "3"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "55"]], "+", RowBox[List["18", " ", "z"]]]], ")"]], " ", RowBox[List["AiryBi", "[", RowBox[List[RowBox[List["-", SuperscriptBox["3", RowBox[List["2", "/", "3"]]]]], " ", SuperscriptBox["z", RowBox[List["1", "/", "3"]]]]], "]"]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "3"]]], " ", SuperscriptBox["3", RowBox[List["1", "/", "6"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["3", " ", "\[ImaginaryI]"]], "-", SqrtBox["3"]]], ")"]], " ", RowBox[List["(", RowBox[List["880", "-", RowBox[List["1080", " ", "z"]], "+", RowBox[List["81", " ", SuperscriptBox["z", "2"]]]]], ")"]], " ", RowBox[List["AiryBiPrime", "[", RowBox[List[RowBox[List["-", SuperscriptBox["3", RowBox[List["2", "/", "3"]]]]], " ", SuperscriptBox["z", RowBox[List["1", "/", "3"]]]]], "]"]]]]]], ")"]], " ", RowBox[List["Gamma", "[", RowBox[List["-", FractionBox["1", "3"]]], "]"]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 0 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mo> &#8202; </mo> <mo> ; </mo> <mfrac> <mn> 17 </mn> <mn> 3 </mn> </mfrac> <mo> ; </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, &quot;0&quot;], SubscriptBox[&quot;F&quot;, &quot;1&quot;]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[&quot;\[Null]&quot;, InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric0F1, Rule[Editable, False], Rule[Selectable, False]], &quot;;&quot;, TagBox[TagBox[TagBox[FractionBox[&quot;17&quot;, &quot;3&quot;], Hypergeometric0F1, Rule[Editable, True], Rule[Selectable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric0F1, Rule[Editable, False], Rule[Selectable, False]], &quot;;&quot;, TagBox[RowBox[List[&quot;-&quot;, &quot;z&quot;]], Hypergeometric0F1, Rule[Editable, True], Rule[Selectable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], Hypergeometric0F1] </annotation> </semantics> <mo> &#63449; </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 59049 </mn> <mo> &#8290; </mo> <msup> <mn> 3 </mn> <mrow> <mn> 5 </mn> <mo> / </mo> <mn> 6 </mn> </mrow> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 14 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 3080 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 144 </mn> </mrow> <mo> &#8290; </mo> <msqrt> <mn> 3 </mn> </msqrt> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 18 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 55 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> Ai </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <msup> <mn> 3 </mn> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> </mrow> <mo> &#8290; </mo> <mroot> <mi> z </mi> <mn> 3 </mn> </mroot> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mroot> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 3 </mn> </mroot> <mo> &#8290; </mo> <mroot> <mn> 3 </mn> <mn> 6 </mn> </mroot> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> + </mo> <mroot> <mrow> <mo> - </mo> <mn> 3 </mn> </mrow> <mn> 6 </mn> </mroot> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mroot> <mrow> <mo> - </mo> <mn> 3 </mn> </mrow> <mn> 6 </mn> </mroot> <mo> + </mo> <mroot> <mrow> <mo> - </mo> <mn> 3 </mn> </mrow> <mn> 3 </mn> </mroot> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 81 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 1080 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 880 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> Ai </mi> <mo> &#8242; </mo> </msup> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <msup> <mn> 3 </mn> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> </mrow> <mo> &#8290; </mo> <mroot> <mi> z </mi> <mn> 3 </mn> </mroot> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 144 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 18 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 55 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> Bi </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <msup> <mn> 3 </mn> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> </mrow> <mo> &#8290; </mo> <mroot> <mi> z </mi> <mn> 3 </mn> </mroot> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mroot> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 3 </mn> </mroot> <mo> &#8290; </mo> <mroot> <mn> 3 </mn> <mn> 6 </mn> </mroot> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> </mrow> <mo> - </mo> <msqrt> <mn> 3 </mn> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 81 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 1080 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 880 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> Bi </mi> <mo> &#8242; </mo> </msup> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <msup> <mn> 3 </mn> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> </mrow> <mo> &#8290; </mo> <mroot> <mi> z </mi> <mn> 3 </mn> </mroot> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 3 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> Hypergeometric0F1 </ci> <cn type='rational'> 17 <sep /> 3 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 59049 </cn> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 5 <sep /> 6 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 14 <sep /> 3 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 3080 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -144 </cn> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 2 <sep /> 3 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 18 </cn> <ci> z </ci> </apply> <cn type='integer'> -55 </cn> </apply> <apply> <ci> AiryAi </ci> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 2 <sep /> 3 </cn> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 3 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 3 </cn> </apply> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 6 </cn> </apply> <apply> <plus /> <cn type='integer'> -1 </cn> <apply> <power /> <cn type='integer'> -3 </cn> <cn type='rational'> 1 <sep /> 6 </cn> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <power /> <cn type='integer'> -3 </cn> <cn type='rational'> 1 <sep /> 6 </cn> </apply> <apply> <power /> <cn type='integer'> -3 </cn> <cn type='rational'> 1 <sep /> 3 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 81 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1080 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> 880 </cn> </apply> <apply> <ci> AiryAiPrime </ci> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 2 <sep /> 3 </cn> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 3 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 144 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 2 <sep /> 3 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 18 </cn> <ci> z </ci> </apply> <cn type='integer'> -55 </cn> </apply> <apply> <ci> AiryBi </ci> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 2 <sep /> 3 </cn> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 3 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 3 </cn> </apply> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 6 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 3 </cn> <imaginaryi /> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 81 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1080 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> 880 </cn> </apply> <apply> <ci> AiryBiPrime </ci> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 2 <sep /> 3 </cn> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 3 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 3 </cn> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Hypergeometric0F1", "[", RowBox[List[FractionBox["17", "3"], ",", RowBox[List["-", "z_"]]]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List["3080", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "144"]], " ", SqrtBox["3"], " ", SuperscriptBox["z", RowBox[List["2", "/", "3"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "55"]], "+", RowBox[List["18", " ", "z"]]]], ")"]], " ", RowBox[List["AiryAi", "[", RowBox[List[RowBox[List["-", SuperscriptBox["3", RowBox[List["2", "/", "3"]]]]], " ", SuperscriptBox["z", RowBox[List["1", "/", "3"]]]]], "]"]]]], "+", RowBox[List["3", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "3"]]], " ", SuperscriptBox["3", RowBox[List["1", "/", "6"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox[RowBox[List["(", RowBox[List["-", "3"]], ")"]], RowBox[List["1", "/", "6"]]]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", SuperscriptBox[RowBox[List["(", RowBox[List["-", "3"]], ")"]], RowBox[List["1", "/", "6"]]], "+", SuperscriptBox[RowBox[List["(", RowBox[List["-", "3"]], ")"]], RowBox[List["1", "/", "3"]]]]], ")"]], " ", RowBox[List["(", RowBox[List["880", "-", RowBox[List["1080", " ", "z"]], "+", RowBox[List["81", " ", SuperscriptBox["z", "2"]]]]], ")"]], " ", RowBox[List["AiryAiPrime", "[", RowBox[List[RowBox[List["-", SuperscriptBox["3", RowBox[List["2", "/", "3"]]]]], " ", SuperscriptBox["z", RowBox[List["1", "/", "3"]]]]], "]"]]]], "-", RowBox[List["144", " ", SuperscriptBox["z", RowBox[List["2", "/", "3"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "55"]], "+", RowBox[List["18", " ", "z"]]]], ")"]], " ", RowBox[List["AiryBi", "[", RowBox[List[RowBox[List["-", SuperscriptBox["3", RowBox[List["2", "/", "3"]]]]], " ", SuperscriptBox["z", RowBox[List["1", "/", "3"]]]]], "]"]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "3"]]], " ", SuperscriptBox["3", RowBox[List["1", "/", "6"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["3", " ", "\[ImaginaryI]"]], "-", SqrtBox["3"]]], ")"]], " ", RowBox[List["(", RowBox[List["880", "-", RowBox[List["1080", " ", "z"]], "+", RowBox[List["81", " ", SuperscriptBox["z", "2"]]]]], ")"]], " ", RowBox[List["AiryBiPrime", "[", RowBox[List[RowBox[List["-", SuperscriptBox["3", RowBox[List["2", "/", "3"]]]]], " ", SuperscriptBox["z", RowBox[List["1", "/", "3"]]]]], "]"]]]]]], ")"]], " ", RowBox[List["Gamma", "[", RowBox[List["-", FractionBox["1", "3"]]], "]"]]]], RowBox[List["59049", " ", SuperscriptBox["3", RowBox[List["5", "/", "6"]]], " ", SuperscriptBox["z", RowBox[List["14", "/", "3"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02





© 1998- Wolfram Research, Inc.