Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
Hypergeometric0F1






Mathematica Notation

Traditional Notation









Hypergeometric Functions > Hypergeometric0F1[b,z] > Continued fraction representations > Involving the function





http://functions.wolfram.com/07.17.10.0001.01









  


  










Input Form





Hypergeometric0F1[b, z] == 1 + z/(b (1 - z/(2 (1 + b))/(1 + z/(2 (1 + b)) - z/(3 (2 + b))/ (1 + z/(3 (2 + b)) - z/(4 (3 + b))/(1 + z/(4 (3 + b)) - z/(5 (4 + b))/(1 + z/(5 (4 + b)) + \[Ellipsis]))))))










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["Hypergeometric0F1", "[", RowBox[List["b", ",", "z"]], "]"]], "\[Equal]", RowBox[List["1", "+", FractionBox[RowBox[List["z", "/", "b"]], RowBox[List["1", "+", FractionBox[RowBox[List["-", FractionBox["z", RowBox[List["2", " ", RowBox[List["(", RowBox[List["1", "+", "b"]], ")"]]]]]]], RowBox[List["1", "+", FractionBox["z", RowBox[List["2", " ", RowBox[List["(", RowBox[List["1", "+", "b"]], ")"]]]]], "+", FractionBox[RowBox[List["-", FractionBox["z", RowBox[List["3", " ", RowBox[List["(", RowBox[List["2", "+", "b"]], ")"]]]]]]], RowBox[List["1", "+", FractionBox["z", RowBox[List["3", " ", RowBox[List["(", RowBox[List["2", "+", "b"]], ")"]]]]], "+", FractionBox[RowBox[List["-", FractionBox["z", RowBox[List["4", " ", RowBox[List["(", RowBox[List["3", "+", "b"]], ")"]]]]]]], RowBox[List["1", "+", FractionBox["z", RowBox[List["4", " ", RowBox[List["(", RowBox[List["3", "+", "b"]], ")"]]]]], "+", FractionBox[RowBox[List["-", FractionBox["z", RowBox[List["5", " ", RowBox[List["(", RowBox[List["4", "+", "b"]], ")"]]]]]]], RowBox[List["1", "+", FractionBox["z", RowBox[List["5", " ", RowBox[List["(", RowBox[List["4", "+", "b"]], ")"]]]]], "+", "\[Ellipsis]"]]]]]]]]]]]]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 0 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mo> &#8202; </mo> <mo> ; </mo> <mi> b </mi> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;0&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;1&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[&quot;\[Null]&quot;, InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric0F1, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[TagBox[&quot;b&quot;, Hypergeometric0F1, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric0F1, Rule[Editable, False]], &quot;;&quot;, TagBox[&quot;z&quot;, Hypergeometric0F1, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric0F1] </annotation> </semantics> <mo> &#10869; </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mfrac> <mrow> <mi> z </mi> <mo> / </mo> <mi> b </mi> </mrow> <mstyle scriptlevel='0'> <mrow> <mn> 1 </mn> <mo> + </mo> <mfrac> <mrow> <mo> - </mo> <mfrac> <mi> z </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> <mstyle scriptlevel='0'> <mrow> <mn> 1 </mn> <mo> + </mo> <mfrac> <mi> z </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> + </mo> <mfrac> <mrow> <mo> - </mo> <mfrac> <mi> z </mi> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> + </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> <mstyle scriptlevel='0'> <mrow> <mn> 1 </mn> <mo> + </mo> <mfrac> <mi> z </mi> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> + </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> + </mo> <mfrac> <mrow> <mo> - </mo> <mfrac> <mi> z </mi> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 3 </mn> <mo> + </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> <mstyle scriptlevel='0'> <mrow> <mn> 1 </mn> <mo> + </mo> <mfrac> <mi> z </mi> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 3 </mn> <mo> + </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> + </mo> <mfrac> <mrow> <mo> - </mo> <mfrac> <mi> z </mi> <mrow> <mn> 5 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 4 </mn> <mo> + </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> <mstyle scriptlevel='0'> <mrow> <mn> 1 </mn> <mo> + </mo> <mfrac> <mi> z </mi> <mrow> <mn> 5 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 4 </mn> <mo> + </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> + </mo> <mo> &#8230; </mo> </mrow> </mstyle> </mfrac> </mrow> </mstyle> </mfrac> </mrow> </mstyle> </mfrac> </mrow> </mstyle> </mfrac> </mrow> </mstyle> </mfrac> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> Hypergeometric0F1 </ci> <ci> b </ci> <ci> z </ci> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <ci> z </ci> <apply> <power /> <ci> b </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> z </ci> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <cn type='integer'> 1 </cn> <ci> b </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <ci> z </ci> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <cn type='integer'> 1 </cn> <ci> b </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> z </ci> <apply> <power /> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <plus /> <cn type='integer'> 2 </cn> <ci> b </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <ci> z </ci> <apply> <power /> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <plus /> <cn type='integer'> 2 </cn> <ci> b </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> z </ci> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <cn type='integer'> 3 </cn> <ci> b </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <ci> z </ci> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <cn type='integer'> 3 </cn> <ci> b </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> z </ci> <apply> <power /> <apply> <times /> <cn type='integer'> 5 </cn> <apply> <plus /> <cn type='integer'> 4 </cn> <ci> b </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <ci> z </ci> <apply> <power /> <apply> <times /> <cn type='integer'> 5 </cn> <apply> <plus /> <cn type='integer'> 4 </cn> <ci> b </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <ci> &#8230; </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Hypergeometric0F1", "[", RowBox[List["b_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List["1", "+", FractionBox["z", RowBox[List["b", " ", RowBox[List["(", RowBox[List["1", "-", FractionBox["z", RowBox[List[RowBox[List["(", RowBox[List["2", " ", RowBox[List["(", RowBox[List["1", "+", "b"]], ")"]]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", FractionBox["z", RowBox[List["2", " ", RowBox[List["(", RowBox[List["1", "+", "b"]], ")"]]]]], "-", FractionBox["z", RowBox[List[RowBox[List["(", RowBox[List["3", " ", RowBox[List["(", RowBox[List["2", "+", "b"]], ")"]]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", FractionBox["z", RowBox[List["3", " ", RowBox[List["(", RowBox[List["2", "+", "b"]], ")"]]]]], "-", FractionBox["z", RowBox[List[RowBox[List["(", RowBox[List["4", " ", RowBox[List["(", RowBox[List["3", "+", "b"]], ")"]]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", FractionBox["z", RowBox[List["4", " ", RowBox[List["(", RowBox[List["3", "+", "b"]], ")"]]]]], "-", FractionBox["z", RowBox[List[RowBox[List["(", RowBox[List["5", " ", RowBox[List["(", RowBox[List["4", "+", "b"]], ")"]]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", FractionBox["z", RowBox[List["5", " ", RowBox[List["(", RowBox[List["4", "+", "b"]], ")"]]]]], "+", "\[Ellipsis]"]], ")"]]]]]]], ")"]]]]]]], ")"]]]]]]], ")"]]]]]]], ")"]]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29





© 1998-2014 Wolfram Research, Inc.