Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
Hypergeometric0F1






Mathematica Notation

Traditional Notation









Hypergeometric Functions > Hypergeometric0F1[b,z] > Identities > Functional identities > Division on even and odd parts and generalization





http://functions.wolfram.com/07.17.17.0009.01









  


  










Input Form





Hypergeometric0F1[b, z] == Sum[(z^k/(Pochhammer[b, k] k!)) HypergeometricPFQ[{1}, {(k + 1)/n, \[Ellipsis], (k + n)/n, (b + k)/n, \[Ellipsis], (b + k + n - 1)/n}, z^n/n^(2 n)], {k, 0, n - 1}]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["Hypergeometric0F1", "[", RowBox[List["b", ",", "z"]], "]"]], "\[Equal]", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["n", "-", "1"]]], RowBox[List[FractionBox[SuperscriptBox["z", "k"], RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List["b", ",", "k"]], "]"]], RowBox[List["k", "!"]]]]], RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", "1", "}"]], ",", RowBox[List["{", RowBox[List[FractionBox[RowBox[List["k", "+", "1"]], "n"], ",", "\[Ellipsis]", ",", FractionBox[RowBox[List["k", "+", "n"]], "n"], ",", FractionBox[RowBox[List["b", "+", "k"]], "n"], ",", "\[Ellipsis]", ",", FractionBox[RowBox[List["b", "+", "k", "+", "n", "-", "1"]], "n"]]], "}"]], ",", RowBox[List[SuperscriptBox["n", RowBox[List[RowBox[List["-", "2"]], "n"]]], SuperscriptBox["z", "n"]]]]], "]"]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 0 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mo> &#8202; </mo> <mo> ; </mo> <mi> b </mi> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;0&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;1&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[&quot;\[Null]&quot;, InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric0F1, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[TagBox[&quot;b&quot;, Hypergeometric0F1, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric0F1, Rule[Editable, False]], &quot;;&quot;, TagBox[&quot;z&quot;, Hypergeometric0F1, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric0F1] </annotation> </semantics> <mo> &#10869; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <mrow> <mfrac> <mrow> <msup> <mi> z </mi> <mi> k </mi> </msup> <mtext> </mtext> </mrow> <mrow> <semantics> <msub> <mrow> <mo> ( </mo> <mi> b </mi> <mo> ) </mo> </mrow> <mi> k </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, &quot;b&quot;, &quot;)&quot;]], &quot;k&quot;], Pochhammer] </annotation> </semantics> <mo> &#8290; </mo> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 1 </mn> </msub> <msub> <mi> F </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 1 </mn> <mo> ; </mo> <mfrac> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mi> n </mi> </mfrac> </mrow> <mo> , </mo> <mo> &#8230; </mo> <mo> , </mo> <mfrac> <mrow> <mi> k </mi> <mo> + </mo> <mi> n </mi> </mrow> <mi> n </mi> </mfrac> <mo> , </mo> <mfrac> <mrow> <mi> b </mi> <mo> + </mo> <mi> k </mi> </mrow> <mi> n </mi> </mfrac> <mo> , </mo> <mo> &#8230; </mo> <mo> , </mo> <mrow> <mfrac> <mrow> <mi> b </mi> <mo> + </mo> <mi> k </mi> <mo> + </mo> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mi> n </mi> </mfrac> <mo> ; </mo> <mrow> <msup> <mi> n </mi> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> &#8290; </mo> <mi> n </mi> </mrow> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mi> n </mi> </msup> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;1&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, RowBox[List[&quot;2&quot;, &quot;n&quot;]]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[RowBox[List[&quot;1&quot;, &quot;;&quot;, FractionBox[RowBox[List[&quot;k&quot;, &quot;+&quot;, &quot;1&quot;]], &quot;n&quot;]]], &quot;,&quot;, &quot;\[Ellipsis]&quot;, &quot;,&quot;, FractionBox[RowBox[List[&quot;k&quot;, &quot;+&quot;, &quot;n&quot;]], &quot;n&quot;], &quot;,&quot;, FractionBox[RowBox[List[&quot;b&quot;, &quot;+&quot;, &quot;k&quot;]], &quot;n&quot;], &quot;,&quot;, &quot;\[Ellipsis]&quot;, &quot;,&quot;, RowBox[List[FractionBox[RowBox[List[&quot;b&quot;, &quot;+&quot;, &quot;k&quot;, &quot;+&quot;, &quot;n&quot;, &quot;-&quot;, &quot;1&quot;]], &quot;n&quot;], &quot;;&quot;, RowBox[List[SuperscriptBox[&quot;n&quot;, RowBox[List[RowBox[List[&quot;-&quot;, &quot;2&quot;]], &quot;n&quot;]]], SuperscriptBox[&quot;z&quot;, &quot;n&quot;]]]]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, True]], HypergeometricPFQ] </annotation> </semantics> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <mrow> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 0 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mo> &#8202; </mo> <mo> ; </mo> <mi> b </mi> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;0&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;1&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[&quot;\[Null]&quot;, InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric0F1, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[TagBox[&quot;b&quot;, Hypergeometric0F1, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric0F1, Rule[Editable, False]], &quot;;&quot;, TagBox[&quot;z&quot;, Hypergeometric0F1, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric0F1] </annotation> </semantics> <mo> &#10869; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <mrow> <mfrac> <mrow> <msup> <mi> z </mi> <mi> k </mi> </msup> <mtext> </mtext> </mrow> <mrow> <semantics> <msub> <mrow> <mo> ( </mo> <mi> b </mi> <mo> ) </mo> </mrow> <mi> k </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, &quot;b&quot;, &quot;)&quot;]], &quot;k&quot;], Pochhammer] </annotation> </semantics> <mo> &#8290; </mo> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 1 </mn> </msub> <msub> <mi> F </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 1 </mn> <mo> ; </mo> <mfrac> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mi> n </mi> </mfrac> </mrow> <mo> , </mo> <mo> &#8230; </mo> <mo> , </mo> <mfrac> <mrow> <mi> k </mi> <mo> + </mo> <mi> n </mi> </mrow> <mi> n </mi> </mfrac> <mo> , </mo> <mfrac> <mrow> <mi> b </mi> <mo> + </mo> <mi> k </mi> </mrow> <mi> n </mi> </mfrac> <mo> , </mo> <mo> &#8230; </mo> <mo> , </mo> <mrow> <mfrac> <mrow> <mi> b </mi> <mo> + </mo> <mi> k </mi> <mo> + </mo> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mi> n </mi> </mfrac> <mo> ; </mo> <mrow> <msup> <mi> n </mi> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> &#8290; </mo> <mi> n </mi> </mrow> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mi> n </mi> </msup> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;1&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, RowBox[List[&quot;2&quot;, &quot;n&quot;]]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[RowBox[List[&quot;1&quot;, &quot;;&quot;, FractionBox[RowBox[List[&quot;k&quot;, &quot;+&quot;, &quot;1&quot;]], &quot;n&quot;]]], &quot;,&quot;, &quot;\[Ellipsis]&quot;, &quot;,&quot;, FractionBox[RowBox[List[&quot;k&quot;, &quot;+&quot;, &quot;n&quot;]], &quot;n&quot;], &quot;,&quot;, FractionBox[RowBox[List[&quot;b&quot;, &quot;+&quot;, &quot;k&quot;]], &quot;n&quot;], &quot;,&quot;, &quot;\[Ellipsis]&quot;, &quot;,&quot;, RowBox[List[FractionBox[RowBox[List[&quot;b&quot;, &quot;+&quot;, &quot;k&quot;, &quot;+&quot;, &quot;n&quot;, &quot;-&quot;, &quot;1&quot;]], &quot;n&quot;], &quot;;&quot;, RowBox[List[SuperscriptBox[&quot;n&quot;, RowBox[List[RowBox[List[&quot;-&quot;, &quot;2&quot;]], &quot;n&quot;]]], SuperscriptBox[&quot;z&quot;, &quot;n&quot;]]]]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, True]], HypergeometricPFQ] </annotation> </semantics> </mrow> </mrow> </mrow> </annotation-xml> </semantics> </math>










Date Added to functions.wolfram.com (modification date)





2001-10-29





© 1998-2014 Wolfram Research, Inc.