Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
Hypergeometric0F1Regularized






Mathematica Notation

Traditional Notation









Hypergeometric Functions > Hypergeometric0F1Regularized[b,z] > Specific values > Specialized values > For fixed z and symbolic parameter





http://functions.wolfram.com/07.18.03.0002.01









  


  










Input Form





Hypergeometric0F1Regularized[b, z] == (-(1/Sqrt[Pi])) E^((1/2) Pi I (3/2 - b)) z^((1 - 2 b)/4) (Sinh[((Pi I)/2) (3/2 - b) - 2 Sqrt[z]] Sum[(Abs[b - 1] + 2 k - 1/2)!/(2^(4 k) (2 k)! (Abs[b - 1] - 2 k - 1/2)! z^k), {k, 0, Floor[(1/4) (2 Abs[b - 1] - 1)]}] + (1/Sqrt[z]) Cosh[((Pi I)/2) (3/2 - b) - 2 Sqrt[z]] Sum[(Abs[b - 1] + 2 k + 1/2)!/(2^(4 k + 2) (2 k + 1)! (Abs[b - 1] - 2 k - 3/2)! z^k), {k, 0, Floor[(1/4) (2 Abs[b - 1] - 3)]}]) /; Element[b - 1/2, Integers]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["Hypergeometric0F1Regularized", "[", RowBox[List["b", ",", "z"]], "]"]], "\[Equal]", RowBox[List[RowBox[List["-", FractionBox["1", SqrtBox["\[Pi]"]]]], SuperscriptBox["\[ExponentialE]", RowBox[List[FractionBox["1", "2"], " ", "\[Pi]", " ", "\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[FractionBox["3", "2"], "-", "b"]], ")"]]]]], SuperscriptBox["z", FractionBox[RowBox[List["1", "-", RowBox[List["2", "b"]]]], "4"]], RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Sinh", "[", RowBox[List[RowBox[List[FractionBox[RowBox[List["\[Pi]", " ", "\[ImaginaryI]"]], "2"], RowBox[List["(", RowBox[List[FractionBox["3", "2"], "-", "b"]], ")"]]]], "-", RowBox[List["2", SqrtBox["z"]]]]], "]"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", RowBox[List["Abs", "[", RowBox[List["b", "-", "1"]], "]"]]]], "-", "1"]], ")"]]]], "]"]]], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", RowBox[List["b", "-", "1"]], "]"]], "+", RowBox[List["2", "k"]], "-", FractionBox["1", "2"]]], ")"]], "!"]], RowBox[List[SuperscriptBox["2", RowBox[List["4", "k"]]], RowBox[List[RowBox[List["(", RowBox[List["2", " ", "k"]], ")"]], "!"]], " ", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", RowBox[List["b", "-", "1"]], "]"]], "-", RowBox[List["2", "k"]], "-", FractionBox["1", "2"]]], ")"]], "!"]], " ", SuperscriptBox["z", "k"]]]]]]]], "+", RowBox[List[FractionBox["1", SqrtBox["z"]], RowBox[List["Cosh", "[", RowBox[List[RowBox[List[FractionBox[RowBox[List["\[Pi]", " ", "\[ImaginaryI]"]], "2"], RowBox[List["(", RowBox[List[FractionBox["3", "2"], "-", "b"]], ")"]]]], "-", RowBox[List["2", SqrtBox["z"]]]]], "]"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", RowBox[List["Abs", "[", RowBox[List["b", "-", "1"]], "]"]]]], "-", "3"]], ")"]]]], "]"]]], FractionBox[RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", RowBox[List["b", "-", "1"]], "]"]], "+", RowBox[List["2", "k"]], "+", FractionBox["1", "2"]]], ")"]], "!"]], " "]], RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["4", "k"]], "+", "2"]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "+", "1"]], ")"]], "!"]], " ", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", RowBox[List["b", "-", "1"]], "]"]], "-", RowBox[List["2", "k"]], "-", FractionBox["3", "2"]]], ")"]], "!"]], SuperscriptBox["z", "k"]]]]]]]]]], ")"]]]]]], "/;", RowBox[List[RowBox[List["b", "-", FractionBox["1", "2"]]], "\[Element]", "Integers"]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 0 </mn> </msub> <msub> <mover> <mi> F </mi> <mo> ~ </mo> </mover> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mo> &#8202; </mo> <mo> ; </mo> <mi> b </mi> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;0&quot;, TraditionalForm]], SubscriptBox[OverscriptBox[&quot;F&quot;, &quot;~&quot;], FormBox[&quot;1&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[&quot;\[Null]&quot;, InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric0F1Regularized, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[TagBox[&quot;b&quot;, Hypergeometric0F1Regularized, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric0F1Regularized, Rule[Editable, False]], &quot;;&quot;, TagBox[&quot;z&quot;, Hypergeometric0F1Regularized, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQRegularized[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric0F1Regularized] </annotation> </semantics> <mo> &#10869; </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <msqrt> <mi> &#960; </mi> </msqrt> </mfrac> </mrow> <mo> &#8290; </mo> <mrow> <mi> exp </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#8520; </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> - </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> z </mi> <mfrac> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> </mrow> </mrow> <mn> 4 </mn> </mfrac> </msup> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mfrac> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#8520; </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> - </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mo> &#8970; </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <mrow> <mi> b </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#8971; </mo> </mrow> </munderover> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <mrow> <mi> b </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mrow> <msup> <mn> 2 </mn> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <mrow> <mi> b </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mi> k </mi> </msup> </mrow> </mfrac> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <msqrt> <mi> z </mi> </msqrt> </mfrac> <mo> &#8290; </mo> <mrow> <mi> cosh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mfrac> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#8520; </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> - </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mo> &#8970; </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <mrow> <mi> b </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> </mrow> <mo> - </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#8971; </mo> </mrow> </munderover> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <mrow> <mi> b </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mrow> <msup> <mn> 2 </mn> <mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 2 </mn> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <mrow> <mi> b </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mi> k </mi> </msup> </mrow> </mfrac> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> b </mi> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> &#8712; </mo> <semantics> <mi> &#8484; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubleStruckCapitalZ]&quot;, Function[Integers]] </annotation> </semantics> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> Hypergeometric0F1Regularized </ci> <ci> b </ci> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <exp /> <apply> <times /> <apply> <times /> <pi /> <imaginaryi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <cn type='rational'> 3 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> </apply> </apply> <apply> <apply> <power /> <ci> z </ci> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> </apply> </apply> </apply> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <sinh /> <apply> <plus /> <apply> <times /> <apply> <times /> <pi /> <imaginaryi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <cn type='rational'> 3 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <floor /> <apply> <times /> <cn type='rational'> 1 <sep /> 4 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <abs /> <apply> <plus /> <ci> b </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </uplimit> <apply> <times /> <apply> <factorial /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <apply> <abs /> <apply> <plus /> <ci> b </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <ci> k </ci> </apply> </apply> <apply> <factorial /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> <apply> <factorial /> <apply> <plus /> <apply> <abs /> <apply> <plus /> <ci> b </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <ci> k </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <cosh /> <apply> <plus /> <apply> <times /> <apply> <times /> <pi /> <imaginaryi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <cn type='rational'> 3 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <floor /> <apply> <times /> <cn type='rational'> 1 <sep /> 4 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <abs /> <apply> <plus /> <ci> b </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> -3 </cn> </apply> </apply> </apply> </uplimit> <apply> <times /> <apply> <factorial /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <apply> <abs /> <apply> <plus /> <ci> b </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> k </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <factorial /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <factorial /> <apply> <plus /> <apply> <abs /> <apply> <plus /> <ci> b </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <ci> k </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <in /> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <integers /> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Hypergeometric0F1Regularized", "[", RowBox[List["b_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["-", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[FractionBox["1", "2"], " ", "\[Pi]", " ", "\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[FractionBox["3", "2"], "-", "b"]], ")"]]]]], " ", SuperscriptBox["z", RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["2", " ", "b"]]]], ")"]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Sinh", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["\[Pi]", " ", "\[ImaginaryI]"]], ")"]], " ", RowBox[List["(", RowBox[List[FractionBox["3", "2"], "-", "b"]], ")"]]]], "-", RowBox[List["2", " ", SqrtBox["z"]]]]], "]"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", RowBox[List["Abs", "[", RowBox[List["b", "-", "1"]], "]"]]]], "-", "1"]], ")"]]]], "]"]]], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", RowBox[List["b", "-", "1"]], "]"]], "+", RowBox[List["2", " ", "k"]], "-", FractionBox["1", "2"]]], ")"]], "!"]], RowBox[List[SuperscriptBox["2", RowBox[List["4", " ", "k"]]], " ", RowBox[List[RowBox[List["(", RowBox[List["2", " ", "k"]], ")"]], "!"]], " ", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", RowBox[List["b", "-", "1"]], "]"]], "-", RowBox[List["2", " ", "k"]], "-", FractionBox["1", "2"]]], ")"]], "!"]], " ", SuperscriptBox["z", "k"]]]]]]]], "+", FractionBox[RowBox[List[RowBox[List["Cosh", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["\[Pi]", " ", "\[ImaginaryI]"]], ")"]], " ", RowBox[List["(", RowBox[List[FractionBox["3", "2"], "-", "b"]], ")"]]]], "-", RowBox[List["2", " ", SqrtBox["z"]]]]], "]"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", RowBox[List["Abs", "[", RowBox[List["b", "-", "1"]], "]"]]]], "-", "3"]], ")"]]]], "]"]]], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", RowBox[List["b", "-", "1"]], "]"]], "+", RowBox[List["2", " ", "k"]], "+", FractionBox["1", "2"]]], ")"]], "!"]], RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["4", " ", "k"]], "+", "2"]]], " ", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "+", "1"]], ")"]], "!"]], " ", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", RowBox[List["b", "-", "1"]], "]"]], "-", RowBox[List["2", " ", "k"]], "-", FractionBox["3", "2"]]], ")"]], "!"]], " ", SuperscriptBox["z", "k"]]]]]]]], SqrtBox["z"]]]], ")"]]]], SqrtBox["\[Pi]"]]]], "/;", RowBox[List[RowBox[List["b", "-", FractionBox["1", "2"]]], "\[Element]", "Integers"]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29





© 1998- Wolfram Research, Inc.