Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
Hypergeometric0F1Regularized






Mathematica Notation

Traditional Notation









Hypergeometric Functions > Hypergeometric0F1Regularized[b,z] > Series representations > Asymptotic series expansions > Expansions for any z in exponential form





http://functions.wolfram.com/07.18.06.0008.01









  


  










Input Form





Hypergeometric0F1Regularized[b, z] \[Proportional] (1/(2 Sqrt[Pi])) (-z)^((1 - 2 b)/4) (E^(I (((1 - 2 b)/4) Pi + 2 Sqrt[-z])) (1 + (I (-3 + 2 b) (-1 + 2 b))/(16 Sqrt[-z]) + ((-5 + 2 b) (-3 + 2 b) (-1 + 2 b) (1 + 2 b))/(512 z) + \[Ellipsis]) + (1 - (I (-3 + 2 b) (-1 + 2 b))/(16 Sqrt[-z]) + ((-5 + 2 b) (-3 + 2 b) (-1 + 2 b) (1 + 2 b))/(512 z) + \[Ellipsis])/ E^(I (((1 - 2 b)/4) Pi + 2 Sqrt[-z]))) /; (Abs[z] -> Infinity)










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["Hypergeometric0F1Regularized", "[", RowBox[List["b", ",", "z"]], "]"]], "\[Proportional]", RowBox[List[FractionBox["1", RowBox[List["2", " ", SqrtBox["\[Pi]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], FractionBox[RowBox[List["1", "-", RowBox[List["2", "b"]]]], "4"]], RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List[FractionBox[RowBox[List["1", "-", RowBox[List["2", "b"]]]], "4"], " ", "\[Pi]"]], "+", RowBox[List["2", " ", SqrtBox[RowBox[List["-", "z"]]]]]]], ")"]]]]], RowBox[List["(", RowBox[List["1", "+", FractionBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "3"]], "+", RowBox[List["2", " ", "b"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["2", " ", "b"]]]], ")"]]]], RowBox[List["16", " ", SqrtBox[RowBox[List["-", "z"]]]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "5"]], "+", RowBox[List["2", " ", "b"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "3"]], "+", RowBox[List["2", " ", "b"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["2", " ", "b"]]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "b"]]]], ")"]]]], RowBox[List["512", " ", "z"]]], "+", "\[Ellipsis]"]], ")"]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[FractionBox[RowBox[List["1", "-", RowBox[List["2", "b"]]]], "4"], " ", "\[Pi]"]], "+", RowBox[List["2", " ", SqrtBox[RowBox[List["-", "z"]]]]]]], ")"]]]]], RowBox[List["(", RowBox[List["1", "-", FractionBox[RowBox[List[" ", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "3"]], "+", RowBox[List["2", " ", "b"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["2", " ", "b"]]]], ")"]]]]]], RowBox[List["16", " ", SqrtBox[RowBox[List["-", "z"]]]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "5"]], "+", RowBox[List["2", " ", "b"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "3"]], "+", RowBox[List["2", " ", "b"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["2", " ", "b"]]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "b"]]]], ")"]]]], RowBox[List["512", " ", "z"]]], "+", "\[Ellipsis]"]], ")"]]]]]], ")"]]]]]], "/;", RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "\[Rule]", "\[Infinity]"]], ")"]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 0 </mn> </msub> <msub> <mover> <mi> F </mi> <mo> ~ </mo> </mover> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mo> &#8202; </mo> <mo> ; </mo> <mi> b </mi> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;0&quot;, TraditionalForm]], SubscriptBox[OverscriptBox[&quot;F&quot;, &quot;~&quot;], FormBox[&quot;1&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[&quot;\[Null]&quot;, InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric0F1Regularized, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[TagBox[&quot;b&quot;, Hypergeometric0F1Regularized, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric0F1Regularized, Rule[Editable, False]], &quot;;&quot;, TagBox[&quot;z&quot;, Hypergeometric0F1Regularized, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQRegularized[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric0F1Regularized] </annotation> </semantics> <mo> &#8733; </mo> <mrow> <mfrac> <mrow> <mn> 1 </mn> <mtext> </mtext> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mi> &#960; </mi> </msqrt> </mrow> </mfrac> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mfrac> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> </mrow> </mrow> <mn> 4 </mn> </mfrac> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> exp </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mfrac> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> </mrow> <mo> - </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 16 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> </mrow> </mfrac> <mo> + </mo> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> </mrow> <mo> - </mo> <mn> 5 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> </mrow> <mo> - </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 512 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mfrac> <mo> + </mo> <mo> &#8230; </mo> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mi> exp </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> &#8520; </mi> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> </mrow> <mo> - </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 16 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> </mrow> </mfrac> <mo> + </mo> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> </mrow> <mo> - </mo> <mn> 5 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> </mrow> <mo> - </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 512 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mfrac> <mo> + </mo> <mo> &#8230; </mo> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <mi> z </mi> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> <semantics> <mo> &#8594; </mo> <annotation encoding='Mathematica'> &quot;\[Rule]&quot; </annotation> </semantics> <mi> &#8734; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <ci> Proportional </ci> <apply> <ci> Hypergeometric0F1Regularized </ci> <ci> b </ci> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> </apply> </apply> </apply> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <exp /> <apply> <times /> <imaginaryi /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 4 </cn> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> </apply> </apply> </apply> <pi /> </apply> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <imaginaryi /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> </apply> <cn type='integer'> -3 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 16 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> </apply> <cn type='integer'> -5 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> </apply> <cn type='integer'> -3 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 512 </cn> <ci> z </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <ci> &#8230; </ci> </apply> </apply> <apply> <times /> <apply> <exp /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 4 </cn> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> </apply> </apply> </apply> <pi /> </apply> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> </apply> <cn type='integer'> -3 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 16 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> </apply> <cn type='integer'> -5 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> </apply> <cn type='integer'> -3 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 512 </cn> <ci> z </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <ci> &#8230; </ci> </apply> </apply> </apply> </apply> </apply> <apply> <ci> Rule </ci> <apply> <abs /> <ci> z </ci> </apply> <infinity /> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Hypergeometric0F1Regularized", "[", RowBox[List["b_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["2", " ", "b"]]]], ")"]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["2", " ", "b"]]]], ")"]], " ", "\[Pi]"]], "+", RowBox[List["2", " ", SqrtBox[RowBox[List["-", "z"]]]]]]], ")"]]]]], " ", RowBox[List["(", RowBox[List["1", "+", FractionBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "3"]], "+", RowBox[List["2", " ", "b"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["2", " ", "b"]]]], ")"]]]], RowBox[List["16", " ", SqrtBox[RowBox[List["-", "z"]]]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "5"]], "+", RowBox[List["2", " ", "b"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "3"]], "+", RowBox[List["2", " ", "b"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["2", " ", "b"]]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "b"]]]], ")"]]]], RowBox[List["512", " ", "z"]]], "+", "\[Ellipsis]"]], ")"]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["2", " ", "b"]]]], ")"]], " ", "\[Pi]"]], "+", RowBox[List["2", " ", SqrtBox[RowBox[List["-", "z"]]]]]]], ")"]]]]], " ", RowBox[List["(", RowBox[List["1", "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "3"]], "+", RowBox[List["2", " ", "b"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["2", " ", "b"]]]], ")"]]]], RowBox[List["16", " ", SqrtBox[RowBox[List["-", "z"]]]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "5"]], "+", RowBox[List["2", " ", "b"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "3"]], "+", RowBox[List["2", " ", "b"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["2", " ", "b"]]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "b"]]]], ")"]]]], RowBox[List["512", " ", "z"]]], "+", "\[Ellipsis]"]], ")"]]]]]], ")"]]]], RowBox[List["2", " ", SqrtBox["\[Pi]"]]]], "/;", RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "\[Rule]", "\[Infinity]"]], ")"]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29





© 1998-2014 Wolfram Research, Inc.