
































Series representations
Generalized power series
Expansions at a==0
Expansions at z==0
For the function itself
General case
Expansions at z==1
Expansions at z==infinity
For the function itself
General case
Asymptotic series expansions
Residue representations








HypergeometricPFQ[{},{},z]  HypergeometricPFQ[{},{b},z]  HypergeometricPFQ[{a},{b},z]  HypergeometricPFQ[{a_{1}},{b_{1},b_{2}},z]  HypergeometricPFQ[{a_{1},a_{2}},{b_{1}},z]  HypergeometricPFQ[{a_{1},a_{2}},{b_{1},b_{2}},z]  HypergeometricPFQ[{a_{1},a_{2}},{b_{1},b_{2},b_{3}},z]  HypergeometricPFQ[{a_{1},a_{2},a_{3}},{b_{1},b_{2}},z]  HypergeometricPFQ[{a_{1},a_{2},a_{3},a_{4}},{b_{1},b_{2},b_{3}},z]  HypergeometricPFQ[{a_{1},a_{2},a_{3},a_{4},a_{5}},{b_{1},b_{2},b_{3},b_{4}},z]  HypergeometricPFQ[{a_{1},a_{2},a_{3},a_{4},a_{5},a_{6}},{b_{1},b_{2},b_{3},b_{4},b_{5}},z]  HypergeometricPFQ[{a_{1},...,a_{p}},{b_{1},...,b_{q}},z]  

© 1998 Wolfram Research, Inc.
