Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
HypergeometricPFQ






Mathematica Notation

Traditional Notation









Hypergeometric Functions > HypergeometricPFQ[{a1},{b1,b2},z] > Differentiation > Low-order differentiation > With respect to b2





http://functions.wolfram.com/07.22.20.0006.01









  


  










Input Form





Derivative[{0}, {0, 1}, 0][HypergeometricPFQ][{Subscript[a, 1]}, {Subscript[b, 1], Subscript[b, 2]}, z] == (-((z Subscript[a, 1])/(Subscript[b, 2]^2 Subscript[b, 1]))) HypergeometricPFQ[{{1 + Subscript[a, 1]}, {1}, {1, Subscript[b, 2]}}, {{2, 1 + Subscript[b, 1], 1 + Subscript[b, 2]}, {}, {1 + Subscript[b, 2]}}, z, z]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[RowBox[List["Derivative", "[", RowBox[List[RowBox[List["{", "0", "}"]], ",", RowBox[List["{", RowBox[List["0", ",", "1"]], "}"]], ",", "0"]], "]"]], "[", "HypergeometricPFQ", "]"]], "[", RowBox[List[RowBox[List["{", SubscriptBox["a", "1"], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b", "1"], ",", SubscriptBox["b", "2"]]], "}"]], ",", "z"]], "]"]], "\[Equal]", RowBox[List[RowBox[List["-", FractionBox[RowBox[List["z", " ", SubscriptBox["a", "1"]]], RowBox[List[SubsuperscriptBox["b", "2", "2"], " ", SubscriptBox["b", "1"], " "]]]]], RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["1", "+", SubscriptBox["a", "1"]]], "}"]], ",", RowBox[List["{", "1", "}"]], ",", RowBox[List["{", RowBox[List["1", ",", SubscriptBox["b", "2"]]], "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["2", ",", RowBox[List["1", "+", SubscriptBox["b", "1"]]], ",", RowBox[List["1", "+", SubscriptBox["b", "2"]]]]], "}"]], ",", RowBox[List["{", "}"]], ",", RowBox[List["{", RowBox[List["1", "+", SubscriptBox["b", "2"]]], "}"]]]], "}"]], ",", "z", ",", "z"]], "]"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msub> <mn> 1 </mn> </msub> <mrow> <msubsup> <mi> F </mi> <mn> 2 </mn> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> { </mo> <mn> 0 </mn> <mo> } </mo> </mrow> <mo> , </mo> <mrow> <mo> { </mo> <mrow> <mn> 0 </mn> <mo> , </mo> <mn> 1 </mn> </mrow> <mo> } </mo> </mrow> <mo> , </mo> <mn> 0 </mn> </mrow> <mo> ) </mo> </mrow> </msubsup> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> { </mo> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> } </mo> </mrow> <mo> , </mo> <mrow> <mo> { </mo> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> </mrow> <mo> } </mo> </mrow> <mo> , </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> z </mi> <mo> &#8290; </mo> <msub> <mi> a </mi> <mn> 1 </mn> </msub> </mrow> <mrow> <msubsup> <mi> b </mi> <mn> 2 </mn> <mn> 2 </mn> </msubsup> <mo> &#8290; </mo> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mtext> </mtext> </mrow> </mfrac> </mrow> <mo> &#8290; </mo> <mrow> <msubsup> <mi> F </mi> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mn> 0 </mn> <mo> &#8290; </mo> <mn> 1 </mn> </mrow> <mrow> <mn> 1 </mn> <mo> &#8290; </mo> <mn> 1 </mn> <mo> &#8290; </mo> <mn> 2 </mn> </mrow> </msubsup> <mo> ( </mo> <mrow> <mrow> <mtable> <mtr> <mtd> <mrow> <mrow> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> <mn> 1 </mn> <mo> ; </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> ; </mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn> 2 </mn> <mo> , </mo> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mrow> <mrow> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> </mrow> <mo> ; </mo> <mrow> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> </mrow> </mrow> </mtd> </mtr> </mtable> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> , </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <mrow> <mrow> <msub> <mn> 1 </mn> </msub> <mrow> <msubsup> <mi> F </mi> <mn> 2 </mn> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> { </mo> <mn> 0 </mn> <mo> } </mo> </mrow> <mo> , </mo> <mrow> <mo> { </mo> <mrow> <mn> 0 </mn> <mo> , </mo> <mn> 1 </mn> </mrow> <mo> } </mo> </mrow> <mo> , </mo> <mn> 0 </mn> </mrow> <mo> ) </mo> </mrow> </msubsup> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> { </mo> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> } </mo> </mrow> <mo> , </mo> <mrow> <mo> { </mo> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> </mrow> <mo> } </mo> </mrow> <mo> , </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> z </mi> <mo> &#8290; </mo> <msub> <mi> a </mi> <mn> 1 </mn> </msub> </mrow> <mrow> <msubsup> <mi> b </mi> <mn> 2 </mn> <mn> 2 </mn> </msubsup> <mo> &#8290; </mo> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mtext> </mtext> </mrow> </mfrac> </mrow> <mo> &#8290; </mo> <mrow> <msubsup> <mi> F </mi> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mn> 0 </mn> <mo> &#8290; </mo> <mn> 1 </mn> </mrow> <mrow> <mn> 1 </mn> <mo> &#8290; </mo> <mn> 1 </mn> <mo> &#8290; </mo> <mn> 2 </mn> </mrow> </msubsup> <mo> ( </mo> <mrow> <mrow> <mtable> <mtr> <mtd> <mrow> <mrow> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> <mn> 1 </mn> <mo> ; </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> ; </mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn> 2 </mn> <mo> , </mo> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mrow> <mrow> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> </mrow> <mo> ; </mo> <mrow> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> </mrow> </mrow> </mtd> </mtr> </mtable> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> , </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SuperscriptBox["HypergeometricPFQ", TagBox[RowBox[List["(", RowBox[List[RowBox[List["{", "0", "}"]], ",", RowBox[List["{", RowBox[List["0", ",", "1"]], "}"]], ",", "0"]], ")"]], Derivative], Rule[MultilineFunction, None]], "[", RowBox[List[RowBox[List["{", SubscriptBox["a_", "1"], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b_", "1"], ",", SubscriptBox["b_", "2"]]], "}"]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List["-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["z", " ", SubscriptBox["aa", "1"]]], ")"]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["1", "+", SubscriptBox["aa", "1"]]], "}"]], ",", RowBox[List["{", "1", "}"]], ",", RowBox[List["{", RowBox[List["1", ",", SubscriptBox["bb", "2"]]], "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["2", ",", RowBox[List["1", "+", SubscriptBox["bb", "1"]]], ",", RowBox[List["1", "+", SubscriptBox["bb", "2"]]]]], "}"]], ",", RowBox[List["{", "}"]], ",", RowBox[List["{", RowBox[List["1", "+", SubscriptBox["bb", "2"]]], "}"]]]], "}"]], ",", "z", ",", "z"]], "]"]]]], RowBox[List[SubsuperscriptBox["bb", "2", "2"], " ", SubscriptBox["bb", "1"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29





© 1998-2014 Wolfram Research, Inc.