Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
Hypergeometric2F1






Mathematica Notation

Traditional Notation









Hypergeometric Functions > Hypergeometric2F1[a,b,c,z] > Identities > Functional identities > Cubic transformations





http://functions.wolfram.com/07.23.17.0131.01









  


  










Input Form





Hypergeometric2F1[a, 3 a - 3/2, 3/2, z] == (1 - z/9) (1 + z/3)^(1/2 - 3 a) Hypergeometric2F1[a - 1/6, a + 1/6, 3/2, (z (z - 9)^2)/(z + 3)^3] /; Abs[z] < 1










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["Hypergeometric2F1", "[", RowBox[List["a", ",", RowBox[List[RowBox[List["3", "a"]], "-", FractionBox["3", "2"]]], ",", FractionBox["3", "2"], ",", "z"]], "]"]], "\[Equal]", RowBox[List[RowBox[List["(", RowBox[List["1", "-", FractionBox["z", "9"]]], ")"]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", FractionBox["z", "3"]]], ")"]], RowBox[List[FractionBox["1", "2"], "-", RowBox[List["3", "a"]]]]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["a", "-", FractionBox["1", "6"]]], ",", RowBox[List["a", "+", FractionBox["1", "6"]]], ",", FractionBox["3", "2"], ",", FractionBox[RowBox[List["z", SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", "9"]], ")"]], "2"]]], SuperscriptBox[RowBox[List["(", RowBox[List["z", "+", "3"]], ")"]], "3"]]]], "]"]]]]]], "/;", RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "<", "1"]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> , </mo> <mrow> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mi> a </mi> </mrow> <mo> - </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> </mrow> </mrow> <mo> ; </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;2&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;1&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[&quot;a&quot;, Hypergeometric2F1, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[RowBox[List[&quot;3&quot;, &quot; &quot;, &quot;a&quot;]], &quot;-&quot;, FractionBox[&quot;3&quot;, &quot;2&quot;]]], Hypergeometric2F1, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[TagBox[FractionBox[&quot;3&quot;, &quot;2&quot;], Hypergeometric2F1, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False]], &quot;;&quot;, TagBox[&quot;z&quot;, Hypergeometric2F1, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric2F1] </annotation> </semantics> <mo> &#10869; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mi> z </mi> <mn> 9 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mfrac> <mi> z </mi> <mn> 3 </mn> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> - </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mi> a </mi> </mrow> </mrow> </msup> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> a </mi> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 6 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mi> a </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 6 </mn> </mfrac> </mrow> </mrow> <mo> ; </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> ; </mo> <mfrac> <mrow> <mi> z </mi> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mn> 9 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> + </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 3 </mn> </msup> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;2&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;1&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List[&quot;a&quot;, &quot;-&quot;, FractionBox[&quot;1&quot;, &quot;6&quot;]]], Hypergeometric2F1, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;a&quot;, &quot;+&quot;, FractionBox[&quot;1&quot;, &quot;6&quot;]]], Hypergeometric2F1, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[TagBox[FractionBox[&quot;3&quot;, &quot;2&quot;], Hypergeometric2F1, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False]], &quot;;&quot;, TagBox[FractionBox[RowBox[List[&quot;z&quot;, &quot; &quot;, SuperscriptBox[RowBox[List[&quot;(&quot;, RowBox[List[&quot;z&quot;, &quot;-&quot;, &quot;9&quot;]], &quot;)&quot;]], &quot;2&quot;]]], SuperscriptBox[RowBox[List[&quot;(&quot;, RowBox[List[&quot;z&quot;, &quot;+&quot;, &quot;3&quot;]], &quot;)&quot;]], &quot;3&quot;]], Hypergeometric2F1, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric2F1] </annotation> </semantics> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> Abs </mi> <mo> [ </mo> <mi> z </mi> <mo> ] </mo> </mrow> <mo> &lt; </mo> <mn> 1 </mn> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> Hypergeometric2F1 </ci> <ci> a </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 3 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> <cn type='rational'> 3 <sep /> 2 </cn> <ci> z </ci> </apply> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> z </ci> <apply> <power /> <cn type='integer'> 9 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> z </ci> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3 </cn> <ci> a </ci> </apply> </apply> </apply> </apply> <apply> <ci> Hypergeometric2F1 </ci> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 6 </cn> </apply> </apply> <apply> <plus /> <ci> a </ci> <cn type='rational'> 1 <sep /> 6 </cn> </apply> <cn type='rational'> 3 <sep /> 2 </cn> <apply> <times /> <ci> z </ci> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> -9 </cn> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> <cn type='integer'> 3 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <lt /> <apply> <abs /> <ci> z </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Hypergeometric2F1", "[", RowBox[List["a_", ",", RowBox[List[RowBox[List["3", " ", "a_"]], "-", FractionBox["3", "2"]]], ",", FractionBox["3", "2"], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["1", "-", FractionBox["z", "9"]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", FractionBox["z", "3"]]], ")"]], RowBox[List[FractionBox["1", "2"], "-", RowBox[List["3", " ", "a"]]]]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["a", "-", FractionBox["1", "6"]]], ",", RowBox[List["a", "+", FractionBox["1", "6"]]], ",", FractionBox["3", "2"], ",", FractionBox[RowBox[List["z", " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", "9"]], ")"]], "2"]]], SuperscriptBox[RowBox[List["(", RowBox[List["z", "+", "3"]], ")"]], "3"]]]], "]"]]]], "/;", RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "<", "1"]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29





© 1998- Wolfram Research, Inc.