Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
Hypergeometric2F1Regularized






Mathematica Notation

Traditional Notation









Hypergeometric Functions > Hypergeometric2F1Regularized[a,b,c,z] > Specific values > Values at other z > Values at z==e+-Pi i/3





http://functions.wolfram.com/07.24.03.0075.01









  


  










Input Form





Hypergeometric2F1Regularized[a, (a + 1)/3, 2 ((a + 1)/3), Exp[-((Pi I)/3)]] == 3^(a/2 - 1) (Gamma[a/3]/(Gamma[2/3] Gamma[a])) Exp[-((Pi a I)/6)]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["Hypergeometric2F1Regularized", "[", RowBox[List["a", ",", FractionBox[RowBox[List["a", "+", "1"]], "3"], ",", RowBox[List["2", FractionBox[RowBox[List["a", "+", "1"]], "3"]]], ",", RowBox[List["Exp", "[", RowBox[List["-", FractionBox[RowBox[List["\[Pi]", " ", "\[ImaginaryI]"]], "3"]]], "]"]]]], "]"]], "\[Equal]", RowBox[List[SuperscriptBox["3", RowBox[List[RowBox[List["a", "/", "2"]], "-", "1"]]], FractionBox[RowBox[List["Gamma", "[", FractionBox["a", "3"], "]"]], RowBox[List[RowBox[List["Gamma", "[", FractionBox["2", "3"], "]"]], RowBox[List["Gamma", "[", "a", "]"]]]]], RowBox[List["Exp", "[", RowBox[List["-", FractionBox[RowBox[List["\[Pi]", " ", "a", " ", "\[ImaginaryI]"]], "6"]]], "]"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mover> <mi> F </mi> <mo> ~ </mo> </mover> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> , </mo> <mfrac> <mrow> <mi> a </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mn> 3 </mn> </mfrac> </mrow> <mo> ; </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mn> 3 </mn> </mfrac> <mo> ; </mo> <msup> <mi> &#8519; </mi> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#8520; </mi> </mrow> <mn> 3 </mn> </mfrac> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;2&quot;, TraditionalForm]], SubscriptBox[OverscriptBox[&quot;F&quot;, &quot;~&quot;], FormBox[&quot;1&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[&quot;a&quot;, Hypergeometric2F1Regularized, Rule[Editable, True]], &quot;,&quot;, TagBox[FractionBox[RowBox[List[&quot;a&quot;, &quot;+&quot;, &quot;1&quot;]], &quot;3&quot;], Hypergeometric2F1Regularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1Regularized, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[TagBox[FractionBox[RowBox[List[&quot;2&quot;, &quot; &quot;, RowBox[List[&quot;(&quot;, RowBox[List[&quot;a&quot;, &quot;+&quot;, &quot;1&quot;]], &quot;)&quot;]]]], &quot;3&quot;], Hypergeometric2F1Regularized, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1Regularized, Rule[Editable, False]], &quot;;&quot;, TagBox[SuperscriptBox[&quot;\[ExponentialE]&quot;, RowBox[List[&quot;-&quot;, FractionBox[RowBox[List[&quot;\[Pi]&quot;, &quot; &quot;, &quot;\[ImaginaryI]&quot;]], &quot;3&quot;]]]], Hypergeometric2F1Regularized, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQRegularized[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric2F1Regularized] </annotation> </semantics> <mo> &#10869; </mo> <mrow> <mfrac> <mrow> <msup> <mn> 3 </mn> <mrow> <mfrac> <mi> a </mi> <mn> 2 </mn> </mfrac> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mi> &#8520; </mi> </mrow> <mn> 6 </mn> </mfrac> </mrow> </msup> </mrow> <mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mn> 2 </mn> <mn> 3 </mn> </mfrac> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mi> a </mi> <mn> 3 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> Hypergeometric2F1Regularized </ci> <ci> a </ci> <apply> <times /> <apply> <plus /> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <pi /> <imaginaryi /> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> 3 </cn> <apply> <plus /> <apply> <times /> <ci> a </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <pi /> <ci> a </ci> <imaginaryi /> <apply> <power /> <cn type='integer'> 6 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <ci> Gamma </ci> <cn type='rational'> 2 <sep /> 3 </cn> </apply> <apply> <ci> Gamma </ci> <ci> a </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <times /> <ci> a </ci> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Hypergeometric2F1Regularized", "[", RowBox[List["a_", ",", FractionBox[RowBox[List["a_", "+", "1"]], "3"], ",", FractionBox[RowBox[List["2", " ", RowBox[List["(", RowBox[List["a_", "+", "1"]], ")"]]]], "3"], ",", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", FractionBox["1", "3"]]], " ", RowBox[List["(", RowBox[List["\[Pi]", " ", "\[ImaginaryI]"]], ")"]]]]]]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[SuperscriptBox["3", RowBox[List[FractionBox["a", "2"], "-", "1"]]], " ", RowBox[List["Gamma", "[", FractionBox["a", "3"], "]"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", FractionBox["1", "6"]]], " ", RowBox[List["(", RowBox[List["\[Pi]", " ", "a", " ", "\[ImaginaryI]"]], ")"]]]]]]], RowBox[List[RowBox[List["Gamma", "[", FractionBox["2", "3"], "]"]], " ", RowBox[List["Gamma", "[", "a", "]"]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29





© 1998- Wolfram Research, Inc.