html, body, form { margin: 0; padding: 0; width: 100%; } #calculate { position: relative; width: 177px; height: 110px; background: transparent url(/images/alphabox/embed_functions_inside.gif) no-repeat scroll 0 0; } #i { position: relative; left: 18px; top: 44px; width: 133px; border: 0 none; outline: 0; font-size: 11px; } #eq { width: 9px; height: 10px; background: transparent; position: absolute; top: 47px; right: 18px; cursor: pointer; }

 HypergeometricPFQ

 http://functions.wolfram.com/07.25.06.0011.01

 Input Form

 HypergeometricPFQ[{Subscript[a, 1], Subscript[a, 1]}, {Subscript[b, 1], Subscript[b, 2]}, z] \[Proportional] ((Gamma[Subscript[b, 1]] Gamma[Subscript[b, 2]])/Gamma[Subscript[a, 1]]^2) z^\[Chi] E^z (1 + O[1/z]) + (((Gamma[Subscript[b, 1]] Gamma[Subscript[b, 2]])/ (Gamma[Subscript[a, 1]] Gamma[Subscript[b, 1] - Subscript[a, 1]] Gamma[Subscript[b, 2] - Subscript[a, 1]])) (Log[-z] (1 + O[1/z]) - (2 EulerGamma + PolyGamma[Subscript[a, 1]] + PolyGamma[Subscript[b, 1] - Subscript[a, 1]] + PolyGamma[Subscript[b, 2] - Subscript[a, 1]]) (1 + O[1/z])))/ (-z)^Subscript[a, 1] /; (Abs[z] -> Infinity) && \[Chi] == 2 Subscript[a, 1] - Subscript[b, 1] - Subscript[b, 2]

 Standard Form

 Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a", "1"], ",", SubscriptBox["a", "1"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b", "1"], ",", SubscriptBox["b", "2"]]], "}"]], ",", "z"]], "]"]], "\[Proportional]", RowBox[List[RowBox[List[FractionBox[RowBox[List[RowBox[List["Gamma", "[", SubscriptBox["b", "1"], "]"]], RowBox[List["Gamma", "[", SubscriptBox["b", "2"], "]"]]]], SuperscriptBox[RowBox[List["Gamma", "[", SubscriptBox["a", "1"], "]"]], "2"]], SuperscriptBox["z", "\[Chi]"], SuperscriptBox["\[ExponentialE]", "z"], RowBox[List["(", RowBox[List["1", "+", RowBox[List["O", "[", FractionBox["1", "z"], "]"]]]], ")"]]]], "+", RowBox[List[FractionBox[RowBox[List[RowBox[List["Gamma", "[", SubscriptBox["b", "1"], "]"]], " ", RowBox[List["Gamma", "[", SubscriptBox["b", "2"], "]"]]]], RowBox[List[RowBox[List["Gamma", "[", SubscriptBox["a", "1"], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["b", "1"], "-", SubscriptBox["a", "1"]]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["b", "2"], "-", SubscriptBox["a", "1"]]], "]"]]]]], SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List["-", SubscriptBox["a", "1"]]]], RowBox[List["(", " ", RowBox[List[RowBox[List[RowBox[List["Log", "[", RowBox[List["-", "z"]], "]"]], RowBox[List["(", RowBox[List["1", "+", RowBox[List["O", "[", FractionBox["1", "z"], "]"]]]], ")"]]]], "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "EulerGamma"]], "+", RowBox[List["PolyGamma", "[", SubscriptBox["a", "1"], "]"]], "+", RowBox[List["PolyGamma", "[", RowBox[List[SubscriptBox["b", "1"], "-", SubscriptBox["a", "1"]]], "]"]], "+", RowBox[List["PolyGamma", "[", RowBox[List[SubscriptBox["b", "2"], "-", SubscriptBox["a", "1"]]], "]"]]]], ")"]], RowBox[List["(", RowBox[List["1", "+", RowBox[List["O", "[", FractionBox["1", "z"], "]"]]]], ")"]]]]]], ")"]]]]]]]], "/;", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "\[Rule]", "\[Infinity]"]], ")"]], "\[And]", RowBox[List["\[Chi]", "\[Equal]", RowBox[List[RowBox[List["2", SubscriptBox["a", "1"]]], "-", SubscriptBox["b", "1"], "-", SubscriptBox["b", "2"]]]]]]]]]]]

 MathML Form

 2 F 2 ( a 1 , a 1 ; b 1 , b 2 ; z ) TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["2", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[SubscriptBox["a", "1"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["a", "1"], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[SubscriptBox["b", "1"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["b", "2"], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox["z", HypergeometricPFQ, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] Γ ( b 1 ) Γ ( b 2 ) Γ ( a 1 ) 2 z ( 1 + O ( 1 z ) ) z χ + Γ ( b 1 ) Γ ( b 2 ) Γ ( a 1 ) Γ ( b 1 - a 1 ) Γ ( b 2 - a 1 ) ( - z ) - a 1 ( log ( - z ) ( 1 + O ( 1 z ) ) - ( ψ TagBox["\[Psi]", PolyGamma] ( b 1 - a 1 ) + ψ TagBox["\[Psi]", PolyGamma] ( b 2 - a 1 ) + ψ TagBox["\[Psi]", PolyGamma] ( a 1 ) + 2 TagBox["\[DoubledGamma]", Function[EulerGamma]] ) ( 1 + O ( 1 z ) ) ) /; ( "\[LeftBracketingBar]" z "\[RightBracketingBar]" "\[Rule]" ) χ 2 a 1 - b 1 - b 2 Condition Proportional HypergeometricPFQ Subscript a 1 Subscript a 1 Subscript b 1 Subscript b 2 z Gamma Subscript b 1 Gamma Subscript b 2 Gamma Subscript a 1 2 -1 z 1 O 1 z -1 z χ Gamma Subscript b 1 Gamma Subscript b 2 Gamma Subscript a 1 Gamma Subscript b 1 -1 Subscript a 1 Gamma Subscript b 2 -1 Subscript a 1 -1 -1 z -1 Subscript a 1 -1 z 1 O 1 z -1 -1 PolyGamma Subscript b 1 -1 Subscript a 1 PolyGamma Subscript b 2 -1 Subscript a 1 PolyGamma Subscript a 1 2 1 O 1 z -1 Rule z χ 2 Subscript a 1 -1 Subscript b 1 -1 Subscript b 2 [/itex]

 Rule Form

 Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a_", "1"], ",", SubscriptBox["a_", "1"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b_", "1"], ",", SubscriptBox["b_", "2"]]], "}"]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Gamma", "[", SubscriptBox["bb", "1"], "]"]], " ", RowBox[List["Gamma", "[", SubscriptBox["bb", "2"], "]"]]]], ")"]], " ", SuperscriptBox["z", "\[Chi]"], " ", SuperscriptBox["\[ExponentialE]", "z"], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["O", "[", FractionBox["1", "z"], "]"]]]], ")"]]]], SuperscriptBox[RowBox[List["Gamma", "[", SubscriptBox["aa", "1"], "]"]], "2"]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Gamma", "[", SubscriptBox["bb", "1"], "]"]], " ", RowBox[List["Gamma", "[", SubscriptBox["bb", "2"], "]"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List["-", SubscriptBox["aa", "1"]]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Log", "[", RowBox[List["-", "z"]], "]"]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["O", "[", FractionBox["1", "z"], "]"]]]], ")"]]]], "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "EulerGamma"]], "+", RowBox[List["PolyGamma", "[", SubscriptBox["aa", "1"], "]"]], "+", RowBox[List["PolyGamma", "[", RowBox[List[SubscriptBox["bb", "1"], "-", SubscriptBox["aa", "1"]]], "]"]], "+", RowBox[List["PolyGamma", "[", RowBox[List[SubscriptBox["bb", "2"], "-", SubscriptBox["aa", "1"]]], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["O", "[", FractionBox["1", "z"], "]"]]]], ")"]]]]]], ")"]]]], RowBox[List[RowBox[List["Gamma", "[", SubscriptBox["aa", "1"], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["bb", "1"], "-", SubscriptBox["aa", "1"]]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["bb", "2"], "-", SubscriptBox["aa", "1"]]], "]"]]]]]]], "/;", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "\[Rule]", "\[Infinity]"]], ")"]], "&&", RowBox[List["\[Chi]", "\[Equal]", RowBox[List[RowBox[List["2", " ", SubscriptBox["aa", "1"]]], "-", SubscriptBox["bb", "1"], "-", SubscriptBox["bb", "2"]]]]]]]]]]]]]

 Date Added to functions.wolfram.com (modification date)

 2001-10-29