Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
HypergeometricPFQ






Mathematica Notation

Traditional Notation









Hypergeometric Functions > HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] > Specific values > For fixed z > For fixed z and a1=1/2, a2=1





http://functions.wolfram.com/07.26.03.0020.01









  


  










Input Form





HypergeometricPFQ[{1/2, 1}, {5/4, 3/2, 7/4}, z] == ((3 Pi)/(8 Sqrt[z])) Erf[(4 z)^(1/4)] Erfi[(4 z)^(1/4)] + ((3 Pi)/((4 z)^(3/4) (4 Sqrt[Pi]))) (Exp[-2 Sqrt[z]] Erfi[(4 z)^(1/4)] - Exp[2 Sqrt[z]] Erf[(4 z)^(1/4)])










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[FractionBox["1", "2"], ",", "1"]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["5", "4"], ",", FractionBox["3", "2"], ",", FractionBox["7", "4"]]], "}"]], ",", "z"]], "]"]], "\[Equal]", RowBox[List[RowBox[List[FractionBox[RowBox[List["3", "\[Pi]"]], RowBox[List["8", SqrtBox["z"]]]], RowBox[List["Erf", "[", SuperscriptBox[RowBox[List["(", RowBox[List["4", "z"]], ")"]], RowBox[List["1", "/", "4"]]], "]"]], RowBox[List["Erfi", "[", SuperscriptBox[RowBox[List["(", RowBox[List["4", "z"]], ")"]], RowBox[List["1", "/", "4"]]], "]"]]]], "+", RowBox[List[FractionBox[RowBox[List["3", "\[Pi]", SuperscriptBox[RowBox[List["(", RowBox[List["4", "z"]], ")"]], RowBox[List[RowBox[List["-", "3"]], "/", "4"]]]]], RowBox[List["4", SqrtBox["\[Pi]"]]]], RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Exp", "[", RowBox[List[RowBox[List["-", "2"]], SqrtBox["z"]]], "]"]], RowBox[List["Erfi", "[", SuperscriptBox[RowBox[List["(", RowBox[List["4", "z"]], ")"]], RowBox[List["1", "/", "4"]]], "]"]]]], "-", RowBox[List[RowBox[List["Exp", "[", RowBox[List["2", SqrtBox["z"]]], "]"]], RowBox[List["Erf", "[", SuperscriptBox[RowBox[List["(", RowBox[List["4", "z"]], ")"]], RowBox[List["1", "/", "4"]]], "]"]]]]]], ")"]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 3 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> , </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> <mrow> <mfrac> <mn> 5 </mn> <mn> 4 </mn> </mfrac> <mo> , </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> , </mo> <mfrac> <mn> 7 </mn> <mn> 4 </mn> </mfrac> </mrow> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;2&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;3&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[&quot;1&quot;, &quot;2&quot;], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[&quot;1&quot;, HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[RowBox[List[TagBox[FractionBox[&quot;5&quot;, &quot;4&quot;], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[FractionBox[&quot;3&quot;, &quot;2&quot;], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[FractionBox[&quot;7&quot;, &quot;4&quot;], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], &quot;;&quot;, TagBox[&quot;z&quot;, HypergeometricPFQ, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> <mo> &#10869; </mo> <mrow> <mrow> <mfrac> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> - </mo> <mn> 3 </mn> </mrow> <mo> / </mo> <mn> 4 </mn> </mrow> </msup> </mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msqrt> <mi> &#960; </mi> </msqrt> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mi> erfi </mi> <mo> &#8289; </mo> <mo> ( </mo> <mroot> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mn> 4 </mn> </mroot> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mi> erf </mi> <mo> &#8289; </mo> <mo> ( </mo> <mroot> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mn> 4 </mn> </mroot> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mrow> <mn> 8 </mn> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mi> erf </mi> <mo> &#8289; </mo> <mo> ( </mo> <mroot> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mn> 4 </mn> </mroot> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> erfi </mi> <mo> &#8289; </mo> <mo> ( </mo> <mroot> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mn> 4 </mn> </mroot> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> HypergeometricPFQ </ci> <list> <cn type='rational'> 1 <sep /> 2 </cn> <cn type='integer'> 1 </cn> </list> <list> <cn type='rational'> 5 <sep /> 4 </cn> <cn type='rational'> 3 <sep /> 2 </cn> <cn type='rational'> 7 <sep /> 4 </cn> </list> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> 3 </cn> <pi /> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> z </ci> </apply> <cn type='rational'> -3 <sep /> 4 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> -2 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <ci> Erfi </ci> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> z </ci> </apply> <cn type='rational'> 1 <sep /> 4 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <ci> Erf </ci> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> z </ci> </apply> <cn type='rational'> 1 <sep /> 4 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 3 </cn> <pi /> <apply> <power /> <apply> <times /> <cn type='integer'> 8 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> Erf </ci> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> z </ci> </apply> <cn type='rational'> 1 <sep /> 4 </cn> </apply> </apply> <apply> <ci> Erfi </ci> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> z </ci> </apply> <cn type='rational'> 1 <sep /> 4 </cn> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[FractionBox["1", "2"], ",", "1"]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["5", "4"], ",", FractionBox["3", "2"], ",", FractionBox["7", "4"]]], "}"]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List["3", " ", "\[Pi]"]], ")"]], " ", RowBox[List["Erf", "[", SuperscriptBox[RowBox[List["(", RowBox[List["4", " ", "z"]], ")"]], RowBox[List["1", "/", "4"]]], "]"]], " ", RowBox[List["Erfi", "[", SuperscriptBox[RowBox[List["(", RowBox[List["4", " ", "z"]], ")"]], RowBox[List["1", "/", "4"]]], "]"]]]], RowBox[List["8", " ", SqrtBox["z"]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["3", " ", "\[Pi]", " ", SuperscriptBox[RowBox[List["(", RowBox[List["4", " ", "z"]], ")"]], RowBox[List[RowBox[List["-", "3"]], "/", "4"]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "2"]], " ", SqrtBox["z"]]]], " ", RowBox[List["Erfi", "[", SuperscriptBox[RowBox[List["(", RowBox[List["4", " ", "z"]], ")"]], RowBox[List["1", "/", "4"]]], "]"]]]], "-", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", SqrtBox["z"]]]], " ", RowBox[List["Erf", "[", SuperscriptBox[RowBox[List["(", RowBox[List["4", " ", "z"]], ")"]], RowBox[List["1", "/", "4"]]], "]"]]]]]], ")"]]]], RowBox[List["4", " ", SqrtBox["\[Pi]"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29





© 1998-2014 Wolfram Research, Inc.