Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
HypergeometricPFQ






Mathematica Notation

Traditional Notation









Hypergeometric Functions > HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] > Series representations > Generalized power series > Expansions at z==1 > For the function itself > The major terms in the general formula for expansions at z==1





http://functions.wolfram.com/07.27.06.0016.01









  


  










Input Form





HypergeometricPFQ[{Subscript[a, 1], Subscript[a, 2], Subscript[a, 3]}, {Subscript[b, 1], Subscript[b, 2]}, z] \[Proportional] ((Gamma[Subscript[b, 1]] Gamma[Subscript[b, 2]])/ (Gamma[Subscript[a, 1]] Gamma[Subscript[a, 2]] Gamma[Subscript[a, 3]])) (-Log[1 - z] - 2 EulerGamma - PolyGamma[Subscript[a, 1]] - PolyGamma[Subscript[a, 2]] + (((Subscript[b, 1] - Subscript[a, 3]) (Subscript[b, 2] - Subscript[a, 3]))/(Subscript[a, 1] Subscript[a, 2])) HypergeometricPFQ[{Subscript[b, 1] - Subscript[a, 3] + 1, Subscript[b, 2] - Subscript[a, 3] + 1, 1, 1}, {Subscript[a, 1] + 1, Subscript[a, 2] + 1, 2}, 1]) (1 + O[z - 1]) /; (z -> 1) && Subscript[\[Psi], 2] == Subscript[b, 1] + Subscript[b, 2] - Subscript[a, 1] - Subscript[a, 2] - Subscript[a, 3] && Subscript[\[Psi], 2] == 0










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a", "1"], ",", SubscriptBox["a", "2"], ",", SubscriptBox["a", "3"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b", "1"], ",", SubscriptBox["b", "2"]]], "}"]], ",", "z"]], "]"]], "\[Proportional]", RowBox[List[FractionBox[RowBox[List[RowBox[List["Gamma", "[", SubscriptBox["b", "1"], "]"]], RowBox[List["Gamma", "[", SubscriptBox["b", "2"], "]"]]]], RowBox[List[RowBox[List["Gamma", "[", SubscriptBox["a", "1"], "]"]], RowBox[List["Gamma", "[", SubscriptBox["a", "2"], "]"]], RowBox[List["Gamma", "[", SubscriptBox["a", "3"], "]"]]]]], RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["Log", "[", RowBox[List["1", "-", "z"]], "]"]]]], "-", RowBox[List["2", " ", "EulerGamma"]], "-", RowBox[List["PolyGamma", "[", SubscriptBox["a", "1"], "]"]], "-", RowBox[List["PolyGamma", "[", SubscriptBox["a", "2"], "]"]], "+", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SubscriptBox["b", "1"], "-", SubscriptBox["a", "3"]]], ")"]], RowBox[List["(", RowBox[List[SubscriptBox["b", "2"], "-", SubscriptBox["a", "3"]]], ")"]]]], RowBox[List[SubscriptBox["a", "1"], SubscriptBox["a", "2"]]]], RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List[SubscriptBox["b", "1"], "-", SubscriptBox["a", "3"], "+", "1"]], ",", RowBox[List[SubscriptBox["b", "2"], "-", SubscriptBox["a", "3"], "+", "1"]], ",", "1", ",", "1"]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List[SubscriptBox["a", "1"], "+", "1"]], ",", RowBox[List[SubscriptBox["a", "2"], "+", "1"]], ",", "2"]], "}"]], ",", "1"]], "]"]]]]]], ")"]], RowBox[List["(", RowBox[List["1", "+", RowBox[List["O", "[", RowBox[List["z", "-", "1"]], "]"]]]], ")"]]]]]], "/;", RowBox[List[RowBox[List["(", RowBox[List["z", "\[Rule]", "1"]], ")"]], "\[And]", RowBox[List[SubscriptBox["\[Psi]", "2"], "\[Equal]", RowBox[List[SubscriptBox["b", "1"], "+", SubscriptBox["b", "2"], "-", SubscriptBox["a", "1"], "-", SubscriptBox["a", "2"], "-", SubscriptBox["a", "3"]]]]], "\[And]", RowBox[List[SubscriptBox["\[Psi]", "2"], "\[Equal]", "0"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 3 </mn> </msub> <msub> <mi> F </mi> <mn> 2 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> , </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> </mrow> <mo> ; </mo> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> </mrow> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;3&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;2&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[SubscriptBox[&quot;a&quot;, &quot;1&quot;], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[SubscriptBox[&quot;a&quot;, &quot;2&quot;], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[SubscriptBox[&quot;a&quot;, &quot;3&quot;], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[RowBox[List[TagBox[SubscriptBox[&quot;b&quot;, &quot;1&quot;], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[SubscriptBox[&quot;b&quot;, &quot;2&quot;], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], &quot;;&quot;, TagBox[&quot;z&quot;, HypergeometricPFQ, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> <mo> &#8733; </mo> <mrow> <mfrac> <mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> ) </mo> </mrow> </mrow> <mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <semantics> <mi> &#8509; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubledGamma]&quot;, Function[EulerGamma]] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> - </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> &#8290; </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> </mrow> </mfrac> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 4 </mn> </msub> <msub> <mi> F </mi> <mn> 3 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mrow> <mo> - </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> </mrow> <mo> + </mo> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mrow> <mo> - </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> </mrow> <mo> + </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mn> 1 </mn> <mo> , </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> <mrow> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mn> 2 </mn> </mrow> <mo> ; </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;4&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;3&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List[RowBox[List[&quot;-&quot;, SubscriptBox[&quot;a&quot;, &quot;3&quot;]]], &quot;+&quot;, SubscriptBox[&quot;b&quot;, &quot;1&quot;], &quot;+&quot;, &quot;1&quot;]], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[RowBox[List[&quot;-&quot;, SubscriptBox[&quot;a&quot;, &quot;3&quot;]]], &quot;+&quot;, SubscriptBox[&quot;b&quot;, &quot;2&quot;], &quot;+&quot;, &quot;1&quot;]], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[&quot;1&quot;, HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[&quot;1&quot;, HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[RowBox[List[TagBox[RowBox[List[SubscriptBox[&quot;a&quot;, &quot;1&quot;], &quot;+&quot;, &quot;1&quot;]], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[SubscriptBox[&quot;a&quot;, &quot;2&quot;], &quot;+&quot;, &quot;1&quot;]], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[&quot;2&quot;, HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], &quot;;&quot;, TagBox[&quot;1&quot;, HypergeometricPFQ, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mrow> <mi> O </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <semantics> <mo> &#8594; </mo> <annotation encoding='Mathematica'> &quot;\[Rule]&quot; </annotation> </semantics> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8743; </mo> <mrow> <msub> <mi> &#968; </mi> <mn> 2 </mn> </msub> <mo> &#10869; </mo> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> - </mo> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> - </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> </mrow> </mrow> <mo> &#8743; </mo> <mrow> <msub> <mi> &#968; </mi> <mn> 2 </mn> </msub> <mo> &#10869; </mo> <mn> 0 </mn> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <ci> Proportional </ci> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> </list> <list> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </list> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <apply> <ci> Gamma </ci> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <ci> Gamma </ci> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ln /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> PolyGamma </ci> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> PolyGamma </ci> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <eulergamma /> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 1 </cn> <cn type='integer'> 1 </cn> </list> <list> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 2 </cn> </list> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <ci> O </ci> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <ci> Rule </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <apply> <eq /> <apply> <ci> Subscript </ci> <ci> &#968; </ci> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> </apply> <apply> <eq /> <apply> <ci> Subscript </ci> <ci> &#968; </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a_", "1"], ",", SubscriptBox["a_", "2"], ",", SubscriptBox["a_", "3"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b_", "1"], ",", SubscriptBox["b_", "2"]]], "}"]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Gamma", "[", SubscriptBox["bb", "1"], "]"]], " ", RowBox[List["Gamma", "[", SubscriptBox["bb", "2"], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["Log", "[", RowBox[List["1", "-", "z"]], "]"]]]], "-", RowBox[List["2", " ", "EulerGamma"]], "-", RowBox[List["PolyGamma", "[", SubscriptBox["aa", "1"], "]"]], "-", RowBox[List["PolyGamma", "[", SubscriptBox["aa", "2"], "]"]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[SubscriptBox["bb", "1"], "-", SubscriptBox["aa", "3"]]], ")"]], " ", RowBox[List["(", RowBox[List[SubscriptBox["bb", "2"], "-", SubscriptBox["aa", "3"]]], ")"]]]], ")"]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List[SubscriptBox["bb", "1"], "-", SubscriptBox["aa", "3"], "+", "1"]], ",", RowBox[List[SubscriptBox["bb", "2"], "-", SubscriptBox["aa", "3"], "+", "1"]], ",", "1", ",", "1"]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List[SubscriptBox["aa", "1"], "+", "1"]], ",", RowBox[List[SubscriptBox["aa", "2"], "+", "1"]], ",", "2"]], "}"]], ",", "1"]], "]"]]]], RowBox[List[SubscriptBox["aa", "1"], " ", SubscriptBox["aa", "2"]]]]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["O", "[", RowBox[List["z", "-", "1"]], "]"]]]], ")"]]]], RowBox[List[RowBox[List["Gamma", "[", SubscriptBox["aa", "1"], "]"]], " ", RowBox[List["Gamma", "[", SubscriptBox["aa", "2"], "]"]], " ", RowBox[List["Gamma", "[", SubscriptBox["aa", "3"], "]"]]]]], "/;", RowBox[List[RowBox[List["(", RowBox[List["z", "\[Rule]", "1"]], ")"]], "&&", RowBox[List[SubscriptBox["\[Psi]", "2"], "\[Equal]", RowBox[List[SubscriptBox["bb", "1"], "+", SubscriptBox["bb", "2"], "-", SubscriptBox["aa", "1"], "-", SubscriptBox["aa", "2"], "-", SubscriptBox["aa", "3"]]]]], "&&", RowBox[List[SubscriptBox["\[Psi]", "2"], "\[Equal]", "0"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29





© 1998-2014 Wolfram Research, Inc.