Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
HypergeometricPFQ






Mathematica Notation

Traditional Notation









Hypergeometric Functions > HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] > Differential equations > Ordinary linear differential equations and wronskians > For the direct function itself > Representation of fundamental system solutions near zero





http://functions.wolfram.com/07.27.13.0011.01









  


  










Input Form





Derivative[3][w][z] + (-((3 (-1 + r + s))/z) + (a r z^(-1 + r) (3 + Subscript[a, 1] + Subscript[a, 2] + Subscript[a, 3]))/(-1 + a z^r) - (r (1 + Subscript[b, 1] + Subscript[b, 2]))/(z (-1 + a z^r))) Derivative[2][w][z] + ((1 - 3 r + 2 r^2 - 3 s + 6 r s + 3 s^2)/z^2 + (r (-1 + r + 2 s))/(z^2 (-1 + a z^r)) + (a r z^(-2 + r) (3 - 2 r - 6 s + Subscript[a, 3] - 2 s Subscript[a, 3] + Subscript[a, 2] (1 - 2 s + r Subscript[a, 3]) + Subscript[a, 1] (1 - 2 s + r Subscript[a, 2] + r Subscript[a, 3])))/ (-1 + a z^r) - (r ((-(-1 + r + 2 s)) Subscript[b, 2] + Subscript[b, 1] (1 - r - 2 s + r Subscript[b, 2])))/ (z^2 (-1 + a z^r))) Derivative[1][w][z] + (-((s (2 r^2 + 3 r s + s^2))/z^3) - (r s (r + s))/(z^3 (-1 + a z^r)) + (a r z^(-3 + r) (Subscript[a, 1] (s - r Subscript[a, 2]) (s - r Subscript[a, 3]) + s (2 r + 3 s + s Subscript[a, 3] + Subscript[a, 2] (s - r Subscript[a, 3]))))/(-1 + a z^r) + (r s ((-(r + s)) Subscript[b, 2] + Subscript[b, 1] (-r - s + r Subscript[b, 2])))/(z^3 (-1 + a z^r))) w[z] == 0 /; w[z] == Subscript[c, 1] z^s HypergeometricPFQRegularized[ {Subscript[a, 1], Subscript[a, 2], Subscript[a, 3]}, {Subscript[b, 1], Subscript[b, 2]}, a z^r] + Subscript[c, 2] z^s (MeijerG[{{1 - Subscript[a, 1], 1 - Subscript[a, 2], 1 - Subscript[a, 3]}, {}}, {{0, 1 - Subscript[b, 1]}, {1 - Subscript[b, 2]}}, a z^r] + MeijerG[{{1 - Subscript[a, 1], 1 - Subscript[a, 2], 1 - Subscript[a, 3]}, {}}, {{0, 1 - Subscript[b, 2]}, {1 - Subscript[b, 1]}}, a z^r]) + Subscript[c, 3] z^s MeijerG[{{1 - Subscript[a, 1], 1 - Subscript[a, 2], 1 - Subscript[a, 3]}, {}}, {{0, 1 - Subscript[b, 1], 1 - Subscript[b, 2]}, {}}, (-a) z^r]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[RowBox[List[SuperscriptBox["w", TagBox[RowBox[List["(", "3", ")"]], Derivative], Rule[MultilineFunction, None]], "[", "z", "]"]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", FractionBox[RowBox[List["3", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "r", "+", "s"]], ")"]]]], "z"]]], "+", FractionBox[RowBox[List["a", " ", "r", " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "1"]], "+", "r"]]], " ", RowBox[List["(", RowBox[List["3", "+", SubscriptBox["a", "1"], "+", SubscriptBox["a", "2"], "+", SubscriptBox["a", "3"]]], ")"]]]], RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["a", " ", SuperscriptBox["z", "r"]]]]]], "-", FractionBox[RowBox[List["r", " ", RowBox[List["(", RowBox[List["1", "+", SubscriptBox["b", "1"], "+", SubscriptBox["b", "2"]]], ")"]]]], RowBox[List["z", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["a", " ", SuperscriptBox["z", "r"]]]]], ")"]]]]]]], ")"]], " ", RowBox[List[SuperscriptBox["w", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[FractionBox[RowBox[List["1", "-", RowBox[List["3", " ", "r"]], "+", RowBox[List["2", " ", SuperscriptBox["r", "2"]]], "-", RowBox[List["3", " ", "s"]], "+", RowBox[List["6", " ", "r", " ", "s"]], "+", RowBox[List["3", " ", SuperscriptBox["s", "2"]]]]], SuperscriptBox["z", "2"]], "+", FractionBox[RowBox[List["r", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "r", "+", RowBox[List["2", " ", "s"]]]], ")"]]]], RowBox[List[SuperscriptBox["z", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["a", " ", SuperscriptBox["z", "r"]]]]], ")"]]]]], "+", FractionBox[RowBox[List["a", " ", "r", " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "2"]], "+", "r"]]], " ", RowBox[List["(", RowBox[List["3", "-", RowBox[List["2", " ", "r"]], "-", RowBox[List["6", " ", "s"]], "+", SubscriptBox["a", "3"], "-", RowBox[List["2", " ", "s", " ", SubscriptBox["a", "3"]]], "+", RowBox[List[SubscriptBox["a", "2"], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["2", " ", "s"]], "+", RowBox[List["r", " ", SubscriptBox["a", "3"]]]]], ")"]]]], "+", RowBox[List[SubscriptBox["a", "1"], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["2", " ", "s"]], "+", RowBox[List["r", " ", SubscriptBox["a", "2"]]], "+", RowBox[List["r", " ", SubscriptBox["a", "3"]]]]], ")"]]]]]], ")"]]]], RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["a", " ", SuperscriptBox["z", "r"]]]]]], "-", FractionBox[RowBox[List["r", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "r", "+", RowBox[List["2", " ", "s"]]]], ")"]]]], " ", SubscriptBox["b", "2"]]], "+", RowBox[List[SubscriptBox["b", "1"], " ", RowBox[List["(", RowBox[List["1", "-", "r", "-", RowBox[List["2", " ", "s"]], "+", RowBox[List["r", " ", SubscriptBox["b", "2"]]]]], ")"]]]]]], ")"]]]], RowBox[List[SuperscriptBox["z", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["a", " ", SuperscriptBox["z", "r"]]]]], ")"]]]]]]], ")"]], " ", RowBox[List[SuperscriptBox["w", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", FractionBox[RowBox[List["s", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", SuperscriptBox["r", "2"]]], "+", RowBox[List["3", " ", "r", " ", "s"]], "+", SuperscriptBox["s", "2"]]], ")"]]]], SuperscriptBox["z", "3"]]]], "-", FractionBox[RowBox[List["r", " ", "s", " ", RowBox[List["(", RowBox[List["r", "+", "s"]], ")"]]]], RowBox[List[SuperscriptBox["z", "3"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["a", " ", SuperscriptBox["z", "r"]]]]], ")"]]]]], "+", FractionBox[RowBox[List["a", " ", "r", " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "3"]], "+", "r"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[SubscriptBox["a", "1"], " ", RowBox[List["(", RowBox[List["s", "-", RowBox[List["r", " ", SubscriptBox["a", "2"]]]]], ")"]], " ", RowBox[List["(", RowBox[List["s", "-", RowBox[List["r", " ", SubscriptBox["a", "3"]]]]], ")"]]]], "+", RowBox[List["s", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "r"]], "+", RowBox[List["3", " ", "s"]], "+", RowBox[List["s", " ", SubscriptBox["a", "3"]]], "+", RowBox[List[SubscriptBox["a", "2"], " ", RowBox[List["(", RowBox[List["s", "-", RowBox[List["r", " ", SubscriptBox["a", "3"]]]]], ")"]]]]]], ")"]]]]]], ")"]]]], RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["a", " ", SuperscriptBox["z", "r"]]]]]], "+", FractionBox[RowBox[List["r", " ", "s", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List["r", "+", "s"]], ")"]]]], " ", SubscriptBox["b", "2"]]], "+", RowBox[List[SubscriptBox["b", "1"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "r"]], "-", "s", "+", RowBox[List["r", " ", SubscriptBox["b", "2"]]]]], ")"]]]]]], ")"]]]], RowBox[List[SuperscriptBox["z", "3"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["a", " ", SuperscriptBox["z", "r"]]]]], ")"]]]]]]], ")"]], " ", RowBox[List["w", "[", "z", "]"]]]]]], "\[Equal]", "0"]], "/;", RowBox[List[RowBox[List["w", "[", "z", "]"]], "\[Equal]", RowBox[List[RowBox[List[SubscriptBox["c", "1"], SuperscriptBox["z", "s"], RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a", "1"], ",", SubscriptBox["a", "2"], ",", SubscriptBox["a", "3"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b", "1"], ",", SubscriptBox["b", "2"]]], "}"]], ",", RowBox[List["a", " ", SuperscriptBox["z", "r"]]]]], "]"]]]], "+", RowBox[List[SubscriptBox["c", "2"], " ", SuperscriptBox["z", "s"], RowBox[List["(", RowBox[List[RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["1", "-", SubscriptBox["a", "1"]]], ",", RowBox[List["1", "-", SubscriptBox["a", "2"]]], ",", RowBox[List["1", "-", SubscriptBox["a", "3"]]]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["0", ",", RowBox[List["1", "-", SubscriptBox["b", "1"]]]]], "}"]], ",", RowBox[List["{", RowBox[List["1", "-", SubscriptBox["b", "2"]]], "}"]]]], "}"]], ",", RowBox[List["a", " ", SuperscriptBox["z", "r"]]]]], "]"]], "+", RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["1", "-", SubscriptBox["a", "1"]]], ",", RowBox[List["1", "-", SubscriptBox["a", "2"]]], ",", RowBox[List["1", "-", SubscriptBox["a", "3"]]]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["0", ",", RowBox[List["1", "-", SubscriptBox["b", "2"]]]]], "}"]], ",", RowBox[List["{", RowBox[List["1", "-", SubscriptBox["b", "1"]]], "}"]]]], "}"]], ",", RowBox[List["a", " ", SuperscriptBox["z", "r"]]]]], "]"]]]], ")"]]]], "+", RowBox[List[SubscriptBox["c", "3"], " ", SuperscriptBox["z", "s"], RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["1", "-", SubscriptBox["a", "1"]]], ",", RowBox[List["1", "-", SubscriptBox["a", "2"]]], ",", RowBox[List["1", "-", SubscriptBox["a", "3"]]]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["0", ",", RowBox[List["1", "-", SubscriptBox["b", "1"]]], ",", RowBox[List["1", "-", SubscriptBox["b", "2"]]]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", RowBox[List[RowBox[List["-", "a"]], " ", SuperscriptBox["z", "r"]]]]], "]"]]]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mrow> <msup> <mi> w </mi> <semantics> <mrow> <mo> ( </mo> <mn> 3 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, &quot;3&quot;, &quot;)&quot;]], Derivative] </annotation> </semantics> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mfrac> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> r </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> + </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> <mo> + </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mi> r </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> </mrow> <mrow> <mrow> <mi> a </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mi> r </mi> </msup> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </mfrac> <mo> - </mo> <mfrac> <mrow> <mi> r </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mi> r </mi> </msup> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> - </mo> <mfrac> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> r </mi> <mo> + </mo> <mi> s </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mi> z </mi> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> w </mi> <mi> &#8242;&#8242; </mi> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mfrac> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> r </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> &#8290; </mo> <mi> r </mi> </mrow> <mo> - </mo> <mrow> <mn> 6 </mn> <mo> &#8290; </mo> <mi> s </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> s </mi> <mo> &#8290; </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> </mrow> <mo> + </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> <mo> + </mo> <mrow> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> &#8290; </mo> <mi> s </mi> </mrow> <mo> + </mo> <mrow> <mi> r </mi> <mo> &#8290; </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> &#8290; </mo> <mi> s </mi> </mrow> <mo> + </mo> <mrow> <mi> r </mi> <mo> &#8290; </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> </mrow> <mo> + </mo> <mrow> <mi> r </mi> <mo> &#8290; </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mi> r </mi> <mo> - </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mrow> <mrow> <mi> a </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mi> r </mi> </msup> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </mfrac> <mo> + </mo> <mfrac> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msup> <mi> r </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 6 </mn> <mo> &#8290; </mo> <mi> s </mi> <mo> &#8290; </mo> <mi> r </mi> </mrow> <mo> - </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mi> r </mi> </mrow> <mo> + </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <msup> <mi> s </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mi> s </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mfrac> <mo> + </mo> <mfrac> <mrow> <mi> r </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> r </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> s </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mi> r </mi> </msup> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> - </mo> <mfrac> <mrow> <mi> r </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> &#8290; </mo> <mi> r </mi> </mrow> <mo> - </mo> <mi> r </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> s </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> r </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> s </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mi> r </mi> </msup> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> w </mi> <mo> &#8242; </mo> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mfrac> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> r </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> s </mi> <mo> - </mo> <mrow> <mi> r </mi> <mo> &#8290; </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> s </mi> <mo> - </mo> <mrow> <mi> r </mi> <mo> &#8290; </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> s </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> r </mi> </mrow> <mo> + </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mi> s </mi> </mrow> <mo> + </mo> <mrow> <mi> s </mi> <mo> &#8290; </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> </mrow> <mo> + </mo> <mrow> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> s </mi> <mo> - </mo> <mrow> <mi> r </mi> <mo> &#8290; </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mi> r </mi> <mo> - </mo> <mn> 3 </mn> </mrow> </msup> </mrow> <mrow> <mrow> <mi> a </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mi> r </mi> </msup> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </mfrac> <mo> + </mo> <mfrac> <mrow> <mi> r </mi> <mo> &#8290; </mo> <mi> s </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> &#8290; </mo> <mi> r </mi> </mrow> <mo> - </mo> <mi> r </mi> <mo> - </mo> <mi> s </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> r </mi> <mo> + </mo> <mi> s </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <msup> <mi> z </mi> <mn> 3 </mn> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mi> r </mi> </msup> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> - </mo> <mfrac> <mrow> <mi> s </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msup> <mi> r </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mi> s </mi> <mo> &#8290; </mo> <mi> r </mi> </mrow> <mo> + </mo> <msup> <mi> s </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mfrac> <mo> - </mo> <mfrac> <mrow> <mi> r </mi> <mo> &#8290; </mo> <mi> s </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> r </mi> <mo> + </mo> <mi> s </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <msup> <mi> z </mi> <mn> 3 </mn> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mi> r </mi> </msup> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> w </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> &#63449; </mo> <mn> 0 </mn> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> w </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#63449; </mo> <mrow> <mrow> <msub> <mi> c </mi> <mn> 1 </mn> </msub> <mo> &#8290; </mo> <msup> <mi> z </mi> <mi> s </mi> </msup> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 3 </mn> </msub> <msub> <mover> <mi> F </mi> <mo> ~ </mo> </mover> <mn> 2 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> , </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> </mrow> <mo> ; </mo> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> </mrow> <mo> ; </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mi> r </mi> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, &quot;3&quot;], SubscriptBox[OverscriptBox[&quot;F&quot;, &quot;~&quot;], &quot;2&quot;]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[SubscriptBox[&quot;a&quot;, &quot;1&quot;], HypergeometricPFQRegularized, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[SubscriptBox[&quot;a&quot;, &quot;2&quot;], HypergeometricPFQRegularized, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[SubscriptBox[&quot;a&quot;, &quot;3&quot;], HypergeometricPFQRegularized, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQRegularized, Rule[Editable, False], Rule[Selectable, False]], &quot;;&quot;, TagBox[TagBox[RowBox[List[TagBox[SubscriptBox[&quot;b&quot;, &quot;1&quot;], HypergeometricPFQRegularized, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[SubscriptBox[&quot;b&quot;, &quot;2&quot;], HypergeometricPFQRegularized, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQRegularized, Rule[Editable, False], Rule[Selectable, False]], &quot;;&quot;, TagBox[RowBox[List[&quot;a&quot;, &quot; &quot;, SuperscriptBox[&quot;z&quot;, &quot;r&quot;]]], HypergeometricPFQRegularized, Rule[Editable, True], Rule[Selectable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQRegularized[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQRegularized] </annotation> </semantics> </mrow> <mtext> </mtext> <mo> + </mo> <mrow> <msub> <mi> c </mi> <mn> 2 </mn> </msub> <mo> &#8290; </mo> <mrow> <msup> <mi> z </mi> <mi> s </mi> </msup> <mo> ( </mo> <mrow> <semantics> <mrow> <msubsup> <mi> G </mi> <mrow> <mn> 3 </mn> <mo> , </mo> <mn> 3 </mn> </mrow> <mrow> <mn> 2 </mn> <mo> , </mo> <mn> 3 </mn> </mrow> </msubsup> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mi> r </mi> </msup> </mrow> <mo> &#10072; </mo> <mtable> <mtr> <mtd> <mrow> <mrow> <mn> 1 </mn> <mo> - </mo> <msub> <mi> a </mi> <mn> 1 </mn> </msub> </mrow> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> </mrow> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn> 0 </mn> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msub> <mi> b </mi> <mn> 1 </mn> </msub> </mrow> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> </mrow> </mrow> </mtd> </mtr> </mtable> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[SubsuperscriptBox[TagBox[&quot;G&quot;, MeijerG], RowBox[List[&quot;3&quot;, &quot;,&quot;, &quot;3&quot;]], RowBox[List[&quot;2&quot;, &quot;,&quot;, &quot;3&quot;]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[RowBox[List[&quot;a&quot;, &quot; &quot;, SuperscriptBox[&quot;z&quot;, &quot;r&quot;]]], MeijerG, Rule[Editable, True], Rule[Selectable, True]], &quot;\[VerticalSeparator]&quot;, GridBox[List[List[RowBox[List[TagBox[RowBox[List[&quot;1&quot;, &quot;-&quot;, SubscriptBox[&quot;a&quot;, &quot;1&quot;]]], MeijerG, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;1&quot;, &quot;-&quot;, SubscriptBox[&quot;a&quot;, &quot;2&quot;]]], MeijerG, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;1&quot;, &quot;-&quot;, SubscriptBox[&quot;a&quot;, &quot;3&quot;]]], MeijerG, Rule[Editable, True], Rule[Selectable, True]]]]], List[RowBox[List[TagBox[&quot;0&quot;, MeijerG, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;1&quot;, &quot;-&quot;, SubscriptBox[&quot;b&quot;, &quot;1&quot;]]], MeijerG, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;1&quot;, &quot;-&quot;, SubscriptBox[&quot;b&quot;, &quot;2&quot;]]], MeijerG, Rule[Editable, True], Rule[Selectable, True]]]]]]]]], &quot;)&quot;]]]], MeijerG, Rule[Editable, False], Rule[Selectable, False]] </annotation> </semantics> <mo> + </mo> <semantics> <mrow> <msubsup> <mi> G </mi> <mrow> <mn> 3 </mn> <mo> , </mo> <mn> 3 </mn> </mrow> <mrow> <mn> 2 </mn> <mo> , </mo> <mn> 3 </mn> </mrow> </msubsup> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mi> r </mi> </msup> </mrow> <mo> &#10072; </mo> <mtable> <mtr> <mtd> <mrow> <mrow> <mn> 1 </mn> <mo> - </mo> <msub> <mi> a </mi> <mn> 1 </mn> </msub> </mrow> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> </mrow> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn> 0 </mn> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> </mrow> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msub> <mi> b </mi> <mn> 1 </mn> </msub> </mrow> </mrow> </mtd> </mtr> </mtable> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[SubsuperscriptBox[TagBox[&quot;G&quot;, MeijerG], RowBox[List[&quot;3&quot;, &quot;,&quot;, &quot;3&quot;]], RowBox[List[&quot;2&quot;, &quot;,&quot;, &quot;3&quot;]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[RowBox[List[&quot;a&quot;, &quot; &quot;, SuperscriptBox[&quot;z&quot;, &quot;r&quot;]]], MeijerG, Rule[Editable, True], Rule[Selectable, True]], &quot;\[VerticalSeparator]&quot;, GridBox[List[List[RowBox[List[TagBox[RowBox[List[&quot;1&quot;, &quot;-&quot;, SubscriptBox[&quot;a&quot;, &quot;1&quot;]]], MeijerG, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;1&quot;, &quot;-&quot;, SubscriptBox[&quot;a&quot;, &quot;2&quot;]]], MeijerG, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;1&quot;, &quot;-&quot;, SubscriptBox[&quot;a&quot;, &quot;3&quot;]]], MeijerG, Rule[Editable, True], Rule[Selectable, True]]]]], List[RowBox[List[TagBox[&quot;0&quot;, MeijerG, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;1&quot;, &quot;-&quot;, SubscriptBox[&quot;b&quot;, &quot;2&quot;]]], MeijerG, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;1&quot;, &quot;-&quot;, SubscriptBox[&quot;b&quot;, &quot;1&quot;]]], MeijerG, Rule[Editable, True], Rule[Selectable, True]]]]]]]]], &quot;)&quot;]]]], MeijerG, Rule[Editable, False], Rule[Selectable, False]] </annotation> </semantics> </mrow> <mo> ) </mo> </mrow> </mrow> <mtext> </mtext> <mo> + </mo> <mrow> <msub> <mi> c </mi> <mn> 3 </mn> </msub> <mo> &#8290; </mo> <msup> <mi> z </mi> <mi> s </mi> </msup> <mo> &#8290; </mo> <semantics> <mrow> <msubsup> <mi> G </mi> <mrow> <mn> 3 </mn> <mo> , </mo> <mn> 3 </mn> </mrow> <mrow> <mn> 3 </mn> <mo> , </mo> <mn> 3 </mn> </mrow> </msubsup> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mi> a </mi> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mi> r </mi> </msup> </mrow> <mo> &#10072; </mo> <mtable> <mtr> <mtd> <mrow> <mrow> <mn> 1 </mn> <mo> - </mo> <msub> <mi> a </mi> <mn> 1 </mn> </msub> </mrow> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> </mrow> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn> 0 </mn> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msub> <mi> b </mi> <mn> 1 </mn> </msub> </mrow> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> </mrow> </mrow> </mtd> </mtr> </mtable> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[SubsuperscriptBox[TagBox[&quot;G&quot;, MeijerG], RowBox[List[&quot;3&quot;, &quot;,&quot;, &quot;3&quot;]], RowBox[List[&quot;3&quot;, &quot;,&quot;, &quot;3&quot;]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[RowBox[List[RowBox[List[&quot;-&quot;, &quot;a&quot;]], &quot; &quot;, SuperscriptBox[&quot;z&quot;, &quot;r&quot;]]], MeijerG, Rule[Editable, True], Rule[Selectable, True]], &quot;\[VerticalSeparator]&quot;, GridBox[List[List[RowBox[List[TagBox[RowBox[List[&quot;1&quot;, &quot;-&quot;, SubscriptBox[&quot;a&quot;, &quot;1&quot;]]], MeijerG, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;1&quot;, &quot;-&quot;, SubscriptBox[&quot;a&quot;, &quot;2&quot;]]], MeijerG, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;1&quot;, &quot;-&quot;, SubscriptBox[&quot;a&quot;, &quot;3&quot;]]], MeijerG, Rule[Editable, True], Rule[Selectable, True]]]]], List[RowBox[List[TagBox[&quot;0&quot;, MeijerG, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;1&quot;, &quot;-&quot;, SubscriptBox[&quot;b&quot;, &quot;1&quot;]]], MeijerG, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;1&quot;, &quot;-&quot;, SubscriptBox[&quot;b&quot;, &quot;2&quot;]]], MeijerG, Rule[Editable, True], Rule[Selectable, True]]]]]]]]], &quot;)&quot;]]]], MeijerG, Rule[Editable, False], Rule[Selectable, False]] </annotation> </semantics> <mtext> </mtext> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <plus /> <apply> <partialdiff /> <bvar> <ci> z </ci> <degree> <cn type='integer'> 3 </cn> </degree> </bvar> <apply> <ci> w </ci> <ci> z </ci> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <ci> a </ci> <ci> r </ci> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <ci> z </ci> <apply> <plus /> <ci> r </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> a </ci> <apply> <power /> <ci> z </ci> <ci> r </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> r </ci> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <apply> <times /> <ci> z </ci> <apply> <plus /> <apply> <times /> <ci> a </ci> <apply> <power /> <ci> z </ci> <ci> r </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <plus /> <ci> r </ci> <ci> s </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <partialdiff /> <bvar> <ci> z </ci> <degree> <cn type='integer'> 2 </cn> </degree> </bvar> <apply> <ci> w </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <ci> a </ci> <ci> r </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> r </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 6 </cn> <ci> s </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> <apply> <times /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> s </ci> </apply> <apply> <times /> <ci> r </ci> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> s </ci> </apply> <apply> <times /> <ci> r </ci> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <ci> r </ci> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <ci> z </ci> <apply> <plus /> <ci> r </ci> <cn type='integer'> -2 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> a </ci> <apply> <power /> <ci> z </ci> <ci> r </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> r </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 6 </cn> <ci> s </ci> <ci> r </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3 </cn> <ci> r </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <power /> <ci> s </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3 </cn> <ci> s </ci> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <ci> r </ci> <apply> <plus /> <ci> r </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <ci> a </ci> <apply> <power /> <ci> z </ci> <ci> r </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> r </ci> <apply> <plus /> <apply> <times /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <apply> <times /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <ci> r </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> r </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <ci> r </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <ci> a </ci> <apply> <power /> <ci> z </ci> <ci> r </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <partialdiff /> <bvar> <ci> z </ci> </bvar> <apply> <ci> w </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <ci> a </ci> <ci> r </ci> <apply> <plus /> <apply> <times /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> s </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> r </ci> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <apply> <plus /> <ci> s </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> r </ci> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <ci> s </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> r </ci> </apply> <apply> <times /> <cn type='integer'> 3 </cn> <ci> s </ci> </apply> <apply> <times /> <ci> s </ci> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <ci> s </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> r </ci> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <apply> <plus /> <ci> r </ci> <cn type='integer'> -3 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> a </ci> <apply> <power /> <ci> z </ci> <ci> r </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <ci> r </ci> <ci> s </ci> <apply> <plus /> <apply> <times /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <apply> <times /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <ci> r </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> r </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> s </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <ci> r </ci> <ci> s </ci> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> <apply> <plus /> <apply> <times /> <ci> a </ci> <apply> <power /> <ci> z </ci> <ci> r </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> s </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> r </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 3 </cn> <ci> s </ci> <ci> r </ci> </apply> <apply> <power /> <ci> s </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> r </ci> <ci> s </ci> <apply> <plus /> <ci> r </ci> <ci> s </ci> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> <apply> <plus /> <apply> <times /> <ci> a </ci> <apply> <power /> <ci> z </ci> <ci> r </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <ci> w </ci> <ci> z </ci> </apply> </apply> </apply> <cn type='integer'> 0 </cn> </apply> <apply> <eq /> <apply> <ci> w </ci> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <ci> Subscript </ci> <ci> c </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <ci> z </ci> <ci> s </ci> </apply> <apply> <ci> HypergeometricPFQRegularized </ci> <list> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> </list> <list> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </list> <apply> <times /> <ci> a </ci> <apply> <power /> <ci> z </ci> <ci> r </ci> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <ci> Subscript </ci> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> <apply> <apply> <power /> <ci> z </ci> <ci> s </ci> </apply> <apply> <plus /> <apply> <ci> MeijerG </ci> <list> <list> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> </list> <list /> </list> <list> <list> <cn type='integer'> 0 </cn> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </list> <list> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </list> </list> <apply> <times /> <ci> a </ci> <apply> <power /> <ci> z </ci> <ci> r </ci> </apply> </apply> </apply> <apply> <ci> MeijerG </ci> <list> <list> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> </list> <list /> </list> <list> <list> <cn type='integer'> 0 </cn> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </list> <list> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </list> </list> <apply> <times /> <ci> a </ci> <apply> <power /> <ci> z </ci> <ci> r </ci> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <ci> Subscript </ci> <ci> c </ci> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <ci> z </ci> <ci> s </ci> </apply> <apply> <ci> MeijerG </ci> <list> <list> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> </list> <list /> </list> <list> <list> <cn type='integer'> 0 </cn> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </list> <list /> </list> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <apply> <power /> <ci> z </ci> <ci> r </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[RowBox[List[SuperscriptBox["w", TagBox[RowBox[List["(", "3", ")"]], Derivative], Rule[MultilineFunction, None]], "[", "z_", "]"]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", FractionBox[RowBox[List["3", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "r_", "+", "s_"]], ")"]]]], "z_"]]], "+", FractionBox[RowBox[List["a_", " ", "r_", " ", SuperscriptBox["z_", RowBox[List[RowBox[List["-", "1"]], "+", "r_"]]], " ", RowBox[List["(", RowBox[List["3", "+", SubscriptBox["a_", "1"], "+", SubscriptBox["a_", "2"], "+", SubscriptBox["a_", "3"]]], ")"]]]], RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["a_", " ", SuperscriptBox["z_", "r_"]]]]]], "-", FractionBox[RowBox[List["r_", " ", RowBox[List["(", RowBox[List["1", "+", SubscriptBox["b_", "1"], "+", SubscriptBox["b_", "2"]]], ")"]]]], RowBox[List["z_", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["a_", " ", SuperscriptBox["z_", "r_"]]]]], ")"]]]]]]], ")"]], " ", RowBox[List[SuperscriptBox["w", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[FractionBox[RowBox[List["1", "-", RowBox[List["3", " ", "r_"]], "+", RowBox[List["2", " ", SuperscriptBox["r_", "2"]]], "-", RowBox[List["3", " ", "s_"]], "+", RowBox[List["6", " ", "r_", " ", "s_"]], "+", RowBox[List["3", " ", SuperscriptBox["s_", "2"]]]]], SuperscriptBox["z_", "2"]], "+", FractionBox[RowBox[List["r_", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "r_", "+", RowBox[List["2", " ", "s_"]]]], ")"]]]], RowBox[List[SuperscriptBox["z_", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["a_", " ", SuperscriptBox["z_", "r_"]]]]], ")"]]]]], "+", FractionBox[RowBox[List["a_", " ", "r_", " ", SuperscriptBox["z_", RowBox[List[RowBox[List["-", "2"]], "+", "r_"]]], " ", RowBox[List["(", RowBox[List["3", "-", RowBox[List["2", " ", "r_"]], "-", RowBox[List["6", " ", "s_"]], "+", SubscriptBox["a_", "3"], "-", RowBox[List["2", " ", "s_", " ", SubscriptBox["a_", "3"]]], "+", RowBox[List[SubscriptBox["a_", "2"], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["2", " ", "s_"]], "+", RowBox[List["r_", " ", SubscriptBox["a_", "3"]]]]], ")"]]]], "+", RowBox[List[SubscriptBox["a_", "1"], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["2", " ", "s_"]], "+", RowBox[List["r_", " ", SubscriptBox["a_", "2"]]], "+", RowBox[List["r_", " ", SubscriptBox["a_", "3"]]]]], ")"]]]]]], ")"]]]], RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["a_", " ", SuperscriptBox["z_", "r_"]]]]]], "-", FractionBox[RowBox[List["r_", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "r_", "+", RowBox[List["2", " ", "s_"]]]], ")"]]]], " ", SubscriptBox["b_", "2"]]], "+", RowBox[List[SubscriptBox["b_", "1"], " ", RowBox[List["(", RowBox[List["1", "-", "r_", "-", RowBox[List["2", " ", "s_"]], "+", RowBox[List["r_", " ", SubscriptBox["b_", "2"]]]]], ")"]]]]]], ")"]]]], RowBox[List[SuperscriptBox["z_", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["a_", " ", SuperscriptBox["z_", "r_"]]]]], ")"]]]]]]], ")"]], " ", RowBox[List[SuperscriptBox["w", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", FractionBox[RowBox[List["s_", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", SuperscriptBox["r_", "2"]]], "+", RowBox[List["3", " ", "r_", " ", "s_"]], "+", SuperscriptBox["s_", "2"]]], ")"]]]], SuperscriptBox["z_", "3"]]]], "-", FractionBox[RowBox[List["r_", " ", "s_", " ", RowBox[List["(", RowBox[List["r_", "+", "s_"]], ")"]]]], RowBox[List[SuperscriptBox["z_", "3"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["a_", " ", SuperscriptBox["z_", "r_"]]]]], ")"]]]]], "+", FractionBox[RowBox[List["a_", " ", "r_", " ", SuperscriptBox["z_", RowBox[List[RowBox[List["-", "3"]], "+", "r_"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[SubscriptBox["a_", "1"], " ", RowBox[List["(", RowBox[List["s_", "-", RowBox[List["r_", " ", SubscriptBox["a_", "2"]]]]], ")"]], " ", RowBox[List["(", RowBox[List["s_", "-", RowBox[List["r_", " ", SubscriptBox["a_", "3"]]]]], ")"]]]], "+", RowBox[List["s_", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "r_"]], "+", RowBox[List["3", " ", "s_"]], "+", RowBox[List["s_", " ", SubscriptBox["a_", "3"]]], "+", RowBox[List[SubscriptBox["a_", "2"], " ", RowBox[List["(", RowBox[List["s_", "-", RowBox[List["r_", " ", SubscriptBox["a_", "3"]]]]], ")"]]]]]], ")"]]]]]], ")"]]]], RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["a_", " ", SuperscriptBox["z_", "r_"]]]]]], "+", FractionBox[RowBox[List["r_", " ", "s_", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List["r_", "+", "s_"]], ")"]]]], " ", SubscriptBox["b_", "2"]]], "+", RowBox[List[SubscriptBox["b_", "1"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "r_"]], "-", "s_", "+", RowBox[List["r_", " ", SubscriptBox["b_", "2"]]]]], ")"]]]]]], ")"]]]], RowBox[List[SuperscriptBox["z_", "3"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["a_", " ", SuperscriptBox["z_", "r_"]]]]], ")"]]]]]]], ")"]], " ", RowBox[List["w", "[", "z_", "]"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List["0", "/;", RowBox[List[RowBox[List["w", "[", "z", "]"]], "\[Equal]", RowBox[List[RowBox[List[SubscriptBox["c", "1"], " ", SuperscriptBox["z", "s"], " ", RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a", "1"], ",", SubscriptBox["a", "2"], ",", SubscriptBox["a", "3"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b", "1"], ",", SubscriptBox["b", "2"]]], "}"]], ",", RowBox[List["a", " ", SuperscriptBox["z", "r"]]]]], "]"]]]], "+", RowBox[List[SubscriptBox["c", "2"], " ", SuperscriptBox["z", "s"], " ", RowBox[List["(", RowBox[List[RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["1", "-", SubscriptBox["a", "1"]]], ",", RowBox[List["1", "-", SubscriptBox["a", "2"]]], ",", RowBox[List["1", "-", SubscriptBox["a", "3"]]]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["0", ",", RowBox[List["1", "-", SubscriptBox["b", "1"]]]]], "}"]], ",", RowBox[List["{", RowBox[List["1", "-", SubscriptBox["b", "2"]]], "}"]]]], "}"]], ",", RowBox[List["a", " ", SuperscriptBox["z", "r"]]]]], "]"]], "+", RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["1", "-", SubscriptBox["a", "1"]]], ",", RowBox[List["1", "-", SubscriptBox["a", "2"]]], ",", RowBox[List["1", "-", SubscriptBox["a", "3"]]]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["0", ",", RowBox[List["1", "-", SubscriptBox["b", "2"]]]]], "}"]], ",", RowBox[List["{", RowBox[List["1", "-", SubscriptBox["b", "1"]]], "}"]]]], "}"]], ",", RowBox[List["a", " ", SuperscriptBox["z", "r"]]]]], "]"]]]], ")"]]]], "+", RowBox[List[SubscriptBox["c", "3"], " ", SuperscriptBox["z", "s"], " ", RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["1", "-", SubscriptBox["a", "1"]]], ",", RowBox[List["1", "-", SubscriptBox["a", "2"]]], ",", RowBox[List["1", "-", SubscriptBox["a", "3"]]]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["0", ",", RowBox[List["1", "-", SubscriptBox["b", "1"]]], ",", RowBox[List["1", "-", SubscriptBox["b", "2"]]]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", RowBox[List[RowBox[List["-", "a"]], " ", SuperscriptBox["z", "r"]]]]], "]"]]]]]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02





© 1998-2014 Wolfram Research, Inc.