Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
HypergeometricPFQ






Mathematica Notation

Traditional Notation









Hypergeometric Functions > HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] > Identities > Functional identities > For fixed a1,a2,b1,z





http://functions.wolfram.com/07.27.17.0033.01









  


  










Input Form





HypergeometricPFQ[{a, b, a + b - 1/2}, {2 a, 2 b}, z] == (1 - z/4)^(1/2 - a - b) HypergeometricPFQ[{(2 a + 2 b - 1)/6, (2 a + 2 b + 1)/6, (2 a + 2 b + 3)/6}, {a + 1/2, b + 1/2}, (27 z^2)/(4 - z)^3]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["a", ",", "b", ",", RowBox[List["a", "+", "b", "-", FractionBox["1", "2"]]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["2", "a"]], ",", RowBox[List["2", "b"]]]], "}"]], ",", "z"]], "]"]], "\[Equal]", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", FractionBox["z", "4"]]], ")"]], RowBox[List[RowBox[List["1", "/", "2"]], "-", "a", "-", "b"]]], RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[FractionBox[RowBox[List[RowBox[List["2", "a"]], "+", RowBox[List["2", "b"]], "-", "1"]], "6"], ",", FractionBox[RowBox[List[RowBox[List["2", "a"]], "+", RowBox[List["2", "b"]], "+", "1"]], "6"], ",", FractionBox[RowBox[List[RowBox[List["2", "a"]], "+", RowBox[List["2", "b"]], "+", "3"]], "6"]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["a", "+", FractionBox["1", "2"]]], ",", RowBox[List["b", "+", FractionBox["1", "2"]]]]], "}"]], ",", FractionBox[RowBox[List["27", SuperscriptBox["z", "2"]]], SuperscriptBox[RowBox[List["(", RowBox[List["4", "-", "z"]], ")"]], "3"]]]], "]"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 3 </mn> </msub> <msub> <mi> F </mi> <mn> 2 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> , </mo> <mi> b </mi> <mo> , </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> </mrow> <mo> ; </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> a </mi> </mrow> <mo> , </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> </mrow> </mrow> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;3&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;2&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[&quot;a&quot;, HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[&quot;b&quot;, HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;a&quot;, &quot;+&quot;, &quot;b&quot;, &quot;-&quot;, FractionBox[&quot;1&quot;, &quot;2&quot;]]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[RowBox[List[TagBox[RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;a&quot;]], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;b&quot;]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], &quot;;&quot;, TagBox[&quot;z&quot;, HypergeometricPFQ, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> <mo> &#10869; </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mi> z </mi> <mn> 4 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> - </mo> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> </msup> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 3 </mn> </msub> <msub> <mi> F </mi> <mn> 2 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> a </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 6 </mn> </mfrac> <mo> , </mo> <mfrac> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> a </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mn> 6 </mn> </mfrac> <mo> , </mo> <mfrac> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> a </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> </mrow> <mo> + </mo> <mn> 3 </mn> </mrow> <mn> 6 </mn> </mfrac> </mrow> <mo> ; </mo> <mrow> <mrow> <mi> a </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mi> b </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> </mrow> <mo> ; </mo> <mfrac> <mrow> <mn> 27 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 4 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mn> 3 </mn> </msup> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;3&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;2&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[RowBox[List[RowBox[List[&quot;2&quot;, &quot;a&quot;]], &quot;+&quot;, RowBox[List[&quot;2&quot;, &quot;b&quot;]], &quot;-&quot;, &quot;1&quot;]], &quot;6&quot;], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[FractionBox[RowBox[List[RowBox[List[&quot;2&quot;, &quot;a&quot;]], &quot;+&quot;, RowBox[List[&quot;2&quot;, &quot;b&quot;]], &quot;+&quot;, &quot;1&quot;]], &quot;6&quot;], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[FractionBox[RowBox[List[RowBox[List[&quot;2&quot;, &quot;a&quot;]], &quot;+&quot;, RowBox[List[&quot;2&quot;, &quot;b&quot;]], &quot;+&quot;, &quot;3&quot;]], &quot;6&quot;], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[RowBox[List[TagBox[RowBox[List[&quot;a&quot;, &quot;+&quot;, FractionBox[&quot;1&quot;, &quot;2&quot;]]], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;b&quot;, &quot;+&quot;, FractionBox[&quot;1&quot;, &quot;2&quot;]]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], &quot;;&quot;, TagBox[FractionBox[RowBox[List[&quot;27&quot;, &quot; &quot;, SuperscriptBox[&quot;z&quot;, &quot;2&quot;]]], SuperscriptBox[RowBox[List[&quot;(&quot;, RowBox[List[&quot;4&quot;, &quot;-&quot;, &quot;z&quot;]], &quot;)&quot;]], &quot;3&quot;]], HypergeometricPFQ, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> HypergeometricPFQ </ci> <list> <ci> a </ci> <ci> b </ci> <apply> <plus /> <ci> a </ci> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </list> <list> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> </apply> </list> <ci> z </ci> </apply> <apply> <times /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> z </ci> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <plus /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> </apply> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <cn type='integer'> 6 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <cn type='integer'> 6 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> </apply> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <cn type='integer'> 6 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </list> <list> <apply> <plus /> <ci> a </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <ci> b </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </list> <apply> <times /> <cn type='integer'> 27 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <cn type='integer'> 4 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> 3 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["a_", ",", "b_", ",", RowBox[List["a_", "+", "b_", "-", FractionBox["1", "2"]]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["2", " ", "a_"]], ",", RowBox[List["2", " ", "b_"]]]], "}"]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", FractionBox["z", "4"]]], ")"]], RowBox[List[FractionBox["1", "2"], "-", "a", "-", "b"]]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List[FractionBox["1", "6"], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "a"]], "+", RowBox[List["2", " ", "b"]], "-", "1"]], ")"]]]], ",", RowBox[List[FractionBox["1", "6"], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "a"]], "+", RowBox[List["2", " ", "b"]], "+", "1"]], ")"]]]], ",", RowBox[List[FractionBox["1", "6"], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "a"]], "+", RowBox[List["2", " ", "b"]], "+", "3"]], ")"]]]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["a", "+", FractionBox["1", "2"]]], ",", RowBox[List["b", "+", FractionBox["1", "2"]]]]], "}"]], ",", FractionBox[RowBox[List["27", " ", SuperscriptBox["z", "2"]]], SuperscriptBox[RowBox[List["(", RowBox[List["4", "-", "z"]], ")"]], "3"]]]], "]"]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29





© 1998- Wolfram Research, Inc.