Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
HypergeometricPFQ






Mathematica Notation

Traditional Notation









Hypergeometric Functions > HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] > Specific values > Values at fixed points > Values at z==3-51/2/2





http://functions.wolfram.com/07.28.03.0185.01









  


  










Input Form





HypergeometricPFQ[{1, 1, 1, 1}, {2, 2, 2}, (3 - Sqrt[5])/2] == (2/(3 - Sqrt[5])) ((4/5) Zeta[3] + (Pi^2/15) Log[(3 - Sqrt[5])/2] - (1/12) Log[(3 - Sqrt[5])/2]^3)










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["1", ",", "1", ",", "1", ",", "1"]], "}"]], ",", RowBox[List["{", RowBox[List["2", ",", "2", ",", "2"]], "}"]], ",", FractionBox[RowBox[List["3", "-", SqrtBox["5"]]], "2"]]], "]"]], "\[Equal]", RowBox[List[FractionBox["2", RowBox[List["3", "-", SqrtBox["5"]]]], RowBox[List["(", RowBox[List[RowBox[List[FractionBox["4", "5"], RowBox[List["Zeta", "[", "3", "]"]]]], "+", RowBox[List[FractionBox[SuperscriptBox["\[Pi]", "2"], "15"], RowBox[List["Log", "[", FractionBox[RowBox[List["3", "-", SqrtBox["5"]]], "2"], "]"]]]], "-", RowBox[List[FractionBox["1", "12"], SuperscriptBox[RowBox[List["Log", "[", FractionBox[RowBox[List["3", "-", SqrtBox["5"]]], "2"], "]"]], "3"]]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 4 </mn> </msub> <msub> <mi> F </mi> <mn> 3 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 1 </mn> <mo> , </mo> <mn> 1 </mn> <mo> , </mo> <mn> 1 </mn> <mo> , </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> <mrow> <mn> 2 </mn> <mo> , </mo> <mn> 2 </mn> <mo> , </mo> <mn> 2 </mn> </mrow> <mo> ; </mo> <mfrac> <mrow> <mn> 3 </mn> <mo> - </mo> <msqrt> <mn> 5 </mn> </msqrt> </mrow> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;4&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;3&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[&quot;1&quot;, HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[&quot;1&quot;, HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[&quot;1&quot;, HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[&quot;1&quot;, HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[RowBox[List[TagBox[&quot;2&quot;, HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[&quot;2&quot;, HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[&quot;2&quot;, HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], &quot;;&quot;, TagBox[FractionBox[RowBox[List[&quot;3&quot;, &quot;-&quot;, SqrtBox[&quot;5&quot;]]], &quot;2&quot;], HypergeometricPFQ, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> <mo> &#10869; </mo> <mrow> <mfrac> <mrow> <mn> 2 </mn> <mtext> </mtext> </mrow> <mrow> <mn> 3 </mn> <mo> - </mo> <msqrt> <mn> 5 </mn> </msqrt> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 15 </mn> </mfrac> <mo> &#8290; </mo> <msup> <mi> &#960; </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mn> 3 </mn> <mo> - </mo> <msqrt> <mn> 5 </mn> </msqrt> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 12 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <msup> <mi> log </mi> <mn> 3 </mn> </msup> <mo> ( </mo> <mfrac> <mrow> <mn> 3 </mn> <mo> - </mo> <msqrt> <mn> 5 </mn> </msqrt> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 4 </mn> <mn> 5 </mn> </mfrac> <mo> &#8290; </mo> <semantics> <mrow> <mi> &#950; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mn> 3 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Zeta]&quot;, &quot;(&quot;, TagBox[&quot;3&quot;, Rule[Editable, True]], &quot;)&quot;]], InterpretTemplate[Function[$CellContext`e, Zeta[$CellContext`e]]]] </annotation> </semantics> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> HypergeometricPFQ </ci> <list> <cn type='integer'> 1 </cn> <cn type='integer'> 1 </cn> <cn type='integer'> 1 </cn> <cn type='integer'> 1 </cn> </list> <list> <cn type='integer'> 2 </cn> <cn type='integer'> 2 </cn> <cn type='integer'> 2 </cn> </list> <apply> <times /> <apply> <plus /> <cn type='integer'> 3 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <cn type='integer'> 5 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 3 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <cn type='integer'> 5 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='rational'> 1 <sep /> 15 </cn> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <apply> <ln /> <apply> <times /> <apply> <plus /> <cn type='integer'> 3 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <cn type='integer'> 5 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='rational'> 1 <sep /> 12 </cn> <apply> <power /> <apply> <ln /> <apply> <times /> <apply> <plus /> <cn type='integer'> 3 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <cn type='integer'> 5 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='rational'> 4 <sep /> 5 </cn> <apply> <ci> Zeta </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["1", ",", "1", ",", "1", ",", "1"]], "}"]], ",", RowBox[List["{", RowBox[List["2", ",", "2", ",", "2"]], "}"]], ",", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["3", "-", SqrtBox["5"]]], ")"]]]]]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List["2", " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List["4", " ", RowBox[List["Zeta", "[", "3", "]"]]]], "5"], "+", RowBox[List[FractionBox["1", "15"], " ", SuperscriptBox["\[Pi]", "2"], " ", RowBox[List["Log", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["3", "-", SqrtBox["5"]]], ")"]]]], "]"]]]], "-", RowBox[List[FractionBox["1", "12"], " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["3", "-", SqrtBox["5"]]], ")"]]]], "]"]], "3"]]]]], ")"]]]], RowBox[List["3", "-", SqrtBox["5"]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29





© 1998-2014 Wolfram Research, Inc.