Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
HypergeometricPFQ






Mathematica Notation

Traditional Notation









Hypergeometric Functions > HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] > Series representations > Generalized power series > Expansions on branch cut > For the function itself





http://functions.wolfram.com/07.28.06.0031.01









  


  










Input Form





HypergeometricPFQ[{Subscript[a, 1], Subscript[a, 2], Subscript[a, 3], Subscript[a, 4]}, {Subscript[b, 1], Subscript[b, 2], Subscript[b, 3]}, z] == ((Gamma[Subscript[a, 2] - Subscript[a, 1]] Gamma[Subscript[a, 3] - Subscript[a, 1]] Gamma[Subscript[a, 4] - Subscript[a, 1]] Product[Gamma[Subscript[b, k]], {k, 1, 3}])/(Gamma[Subscript[a, 2]] Gamma[Subscript[a, 3]] Gamma[Subscript[a, 4]] Product[Gamma[Subscript[b, j] - Subscript[a, 1]], {j, 1, 3}])) Sum[((Pochhammer[Subscript[a, 1], u]/((-x)^u u!)) HypergeometricPFQ[{Subscript[a, 1] + u, 1 + Subscript[a, 1] - Subscript[b, 1], 1 + Subscript[a, 1] - Subscript[b, 2], 1 + Subscript[a, 1] - Subscript[b, 3]}, {1 + Subscript[a, 1] - Subscript[a, 2], 1 + Subscript[a, 1] - Subscript[a, 3], 1 + Subscript[a, 1] - Subscript[a, 4]}, 1/x] (z - x)^u)/(E^(Pi I Subscript[a, 1] (1 + 2 Floor[Arg[x - z]/(2 Pi)])) x^Subscript[a, 1]), {u, 0, Infinity}] + ((Gamma[Subscript[a, 1] - Subscript[a, 2]] Gamma[Subscript[a, 3] - Subscript[a, 2]] Gamma[Subscript[a, 4] - Subscript[a, 2]] Product[Gamma[Subscript[b, k]], {k, 1, 3}])/(Gamma[Subscript[a, 1]] Gamma[Subscript[a, 3]] Gamma[Subscript[a, 4]] Product[Gamma[Subscript[b, j] - Subscript[a, 2]], {j, 1, 3}])) Sum[((Pochhammer[Subscript[a, 2], u]/((-x)^u u!)) HypergeometricPFQ[{Subscript[a, 2] + u, 1 + Subscript[a, 2] - Subscript[b, 1], 1 + Subscript[a, 2] - Subscript[b, 2], 1 + Subscript[a, 2] - Subscript[b, 3]}, {1 + Subscript[a, 2] - Subscript[a, 1], 1 + Subscript[a, 2] - Subscript[a, 3], 1 + Subscript[a, 2] - Subscript[a, 4]}, 1/x] (z - x)^u)/(E^(Pi I Subscript[a, 2] (1 + 2 Floor[Arg[x - z]/(2 Pi)])) x^Subscript[a, 2]), {u, 0, Infinity}] + ((Gamma[Subscript[a, 1] - Subscript[a, 3]] Gamma[Subscript[a, 2] - Subscript[a, 3]] Gamma[Subscript[a, 4] - Subscript[a, 3]] Product[Gamma[Subscript[b, k]], {k, 1, 3}])/(Gamma[Subscript[a, 1]] Gamma[Subscript[a, 2]] Gamma[Subscript[a, 4]] Product[Gamma[Subscript[b, j] - Subscript[a, 3]], {j, 1, 3}])) Sum[((Pochhammer[Subscript[a, 3], u]/((-x)^u u!)) HypergeometricPFQ[{Subscript[a, 3] + u, 1 + Subscript[a, 3] - Subscript[b, 1], 1 + Subscript[a, 3] - Subscript[b, 2], 1 + Subscript[a, 3] - Subscript[b, 3]}, {1 + Subscript[a, 3] - Subscript[a, 1], 1 + Subscript[a, 3] - Subscript[a, 2], 1 + Subscript[a, 3] - Subscript[a, 4]}, 1/x] (z - x)^u)/(E^(Pi I Subscript[a, 3] (1 + 2 Floor[Arg[x - z]/(2 Pi)])) x^Subscript[a, 3]), {u, 0, Infinity}] + ((Gamma[Subscript[a, 1] - Subscript[a, 4]] Gamma[Subscript[a, 2] - Subscript[a, 4]] Gamma[Subscript[a, 3] - Subscript[a, 4]] Product[Gamma[Subscript[b, k]], {k, 1, 3}])/(Gamma[Subscript[a, 1]] Gamma[Subscript[a, 2]] Gamma[Subscript[a, 3]] Product[Gamma[Subscript[b, j] - Subscript[a, 4]], {j, 1, 3}])) Sum[((Pochhammer[Subscript[a, 4], u]/((-x)^u u!)) HypergeometricPFQ[{Subscript[a, 4] + u, 1 + Subscript[a, 4] - Subscript[b, 1], 1 + Subscript[a, 4] - Subscript[b, 2], 1 + Subscript[a, 4] - Subscript[b, 3]}, {1 + Subscript[a, 4] - Subscript[a, 1], 1 + Subscript[a, 4] - Subscript[a, 2], 1 + Subscript[a, 4] - Subscript[a, 3]}, 1/x] (z - x)^u)/(E^(Pi I Subscript[a, 4] (1 + 2 Floor[Arg[x - z]/(2 Pi)])) x^Subscript[a, 4]), {u, 0, Infinity}] /; ForAll[{j, k}, Element[{j, k}, Integers] && j != k && 1 <= j <= 4 && 1 <= k <= 4, !Element[Subscript[a, j] - Subscript[a, k], Integers]] && x > 1










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a", "1"], ",", SubscriptBox["a", "2"], ",", SubscriptBox["a", "3"], ",", SubscriptBox["a", "4"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b", "1"], ",", SubscriptBox["b", "2"], ",", SubscriptBox["b", "3"]]], "}"]], ",", "z"]], "]"]], "\[Equal]", RowBox[List[RowBox[List[FractionBox[RowBox[List[" ", RowBox[List[RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["a", "2"], "-", SubscriptBox["a", "1"]]], "]"]], RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["a", "3"], "-", SubscriptBox["a", "1"]]], "]"]], RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["a", "4"], "-", SubscriptBox["a", "1"]]], "]"]], RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "1"]], "3"], RowBox[List["Gamma", "[", SubscriptBox["b", "k"], "]"]]]]]]]], RowBox[List[RowBox[List["Gamma", "[", SubscriptBox["a", "2"], "]"]], RowBox[List["Gamma", "[", SubscriptBox["a", "3"], "]"]], RowBox[List["Gamma", "[", SubscriptBox["a", "4"], "]"]], RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["j", "=", "1"]], "3"], RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["b", "j"], "-", SubscriptBox["a", "1"]]], "]"]]]]]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["u", "=", "0"]], "\[Infinity]"], RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "x"]], ")"]], RowBox[List["-", "u"]]], RowBox[List["Pochhammer", "[", RowBox[List[SubscriptBox["a", "1"], ",", "u"]], "]"]]]], RowBox[List["u", "!"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", " ", "\[Pi]"]], " ", "\[ImaginaryI]", " ", SubscriptBox["a", "1"], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List["x", "-", "z"]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]]]], ")"]]]]], SuperscriptBox["x", RowBox[List["-", SubscriptBox["a", "1"]]]], RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List[SubscriptBox["a", "1"], "+", "u"]], ",", RowBox[List["1", "+", SubscriptBox["a", "1"], "-", SubscriptBox["b", "1"]]], ",", RowBox[List["1", "+", SubscriptBox["a", "1"], "-", SubscriptBox["b", "2"]]], ",", RowBox[List["1", "+", SubscriptBox["a", "1"], "-", SubscriptBox["b", "3"]]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", SubscriptBox["a", "1"], "-", SubscriptBox["a", "2"]]], ",", RowBox[List["1", "+", SubscriptBox["a", "1"], "-", SubscriptBox["a", "3"]]], ",", RowBox[List["1", "+", SubscriptBox["a", "1"], "-", SubscriptBox["a", "4"]]]]], "}"]], ",", FractionBox["1", "x"]]], "]"]], SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", "x"]], ")"]], "u"]]]]]]], "+", RowBox[List[FractionBox[RowBox[List[" ", RowBox[List[RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["a", "1"], "-", SubscriptBox["a", "2"]]], "]"]], RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["a", "3"], "-", SubscriptBox["a", "2"]]], "]"]], RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["a", "4"], "-", SubscriptBox["a", "2"]]], "]"]], RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "1"]], "3"], RowBox[List["Gamma", "[", SubscriptBox["b", "k"], "]"]]]]]]]], RowBox[List[RowBox[List["Gamma", "[", SubscriptBox["a", "1"], "]"]], RowBox[List["Gamma", "[", SubscriptBox["a", "3"], "]"]], RowBox[List["Gamma", "[", SubscriptBox["a", "4"], "]"]], RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["j", "=", "1"]], "3"], RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["b", "j"], "-", SubscriptBox["a", "2"]]], "]"]]]]]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["u", "=", "0"]], "\[Infinity]"], RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "x"]], ")"]], RowBox[List["-", "u"]]], RowBox[List["Pochhammer", "[", RowBox[List[SubscriptBox["a", "2"], ",", "u"]], "]"]]]], RowBox[List["u", "!"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", " ", "\[Pi]"]], " ", "\[ImaginaryI]", " ", SubscriptBox["a", "2"], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List["x", "-", "z"]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]]]], ")"]]]]], SuperscriptBox["x", RowBox[List["-", SubscriptBox["a", "2"]]]], RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List[SubscriptBox["a", "2"], "+", "u"]], ",", RowBox[List["1", "+", SubscriptBox["a", "2"], "-", SubscriptBox["b", "1"]]], ",", RowBox[List["1", "+", SubscriptBox["a", "2"], "-", SubscriptBox["b", "2"]]], ",", RowBox[List["1", "+", SubscriptBox["a", "2"], "-", SubscriptBox["b", "3"]]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", SubscriptBox["a", "2"], "-", SubscriptBox["a", "1"]]], ",", RowBox[List["1", "+", SubscriptBox["a", "2"], "-", SubscriptBox["a", "3"]]], ",", RowBox[List["1", "+", SubscriptBox["a", "2"], "-", SubscriptBox["a", "4"]]]]], "}"]], ",", FractionBox["1", "x"]]], "]"]], SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", "x"]], ")"]], "u"]]]]]]], "+", RowBox[List[FractionBox[RowBox[List[" ", RowBox[List[RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["a", "1"], "-", SubscriptBox["a", "3"]]], "]"]], RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["a", "2"], "-", SubscriptBox["a", "3"]]], "]"]], RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["a", "4"], "-", SubscriptBox["a", "3"]]], "]"]], RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "1"]], "3"], RowBox[List["Gamma", "[", SubscriptBox["b", "k"], "]"]]]]]]]], RowBox[List[RowBox[List["Gamma", "[", SubscriptBox["a", "1"], "]"]], RowBox[List["Gamma", "[", SubscriptBox["a", "2"], "]"]], RowBox[List["Gamma", "[", SubscriptBox["a", "4"], "]"]], RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["j", "=", "1"]], "3"], RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["b", "j"], "-", SubscriptBox["a", "3"]]], "]"]]]]]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["u", "=", "0"]], "\[Infinity]"], RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "x"]], ")"]], RowBox[List["-", "u"]]], RowBox[List["Pochhammer", "[", RowBox[List[SubscriptBox["a", "3"], ",", "u"]], "]"]]]], RowBox[List["u", "!"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", " ", "\[Pi]"]], " ", "\[ImaginaryI]", " ", SubscriptBox["a", "3"], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List["x", "-", "z"]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]]]], ")"]]]]], SuperscriptBox["x", RowBox[List["-", SubscriptBox["a", "3"]]]], RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List[SubscriptBox["a", "3"], "+", "u"]], ",", RowBox[List["1", "+", SubscriptBox["a", "3"], "-", SubscriptBox["b", "1"]]], ",", RowBox[List["1", "+", SubscriptBox["a", "3"], "-", SubscriptBox["b", "2"]]], ",", RowBox[List["1", "+", SubscriptBox["a", "3"], "-", SubscriptBox["b", "3"]]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", SubscriptBox["a", "3"], "-", SubscriptBox["a", "1"]]], ",", RowBox[List["1", "+", SubscriptBox["a", "3"], "-", SubscriptBox["a", "2"]]], ",", RowBox[List["1", "+", SubscriptBox["a", "3"], "-", SubscriptBox["a", "4"]]]]], "}"]], ",", FractionBox["1", "x"]]], "]"]], SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", "x"]], ")"]], "u"]]]]]]], "+", RowBox[List[FractionBox[RowBox[List[" ", RowBox[List[RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["a", "1"], "-", SubscriptBox["a", "4"]]], "]"]], RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["a", "2"], "-", SubscriptBox["a", "4"]]], "]"]], RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["a", "3"], "-", SubscriptBox["a", "4"]]], "]"]], RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "1"]], "3"], RowBox[List["Gamma", "[", SubscriptBox["b", "k"], "]"]]]]]]]], RowBox[List[RowBox[List["Gamma", "[", SubscriptBox["a", "1"], "]"]], RowBox[List["Gamma", "[", SubscriptBox["a", "2"], "]"]], RowBox[List["Gamma", "[", SubscriptBox["a", "3"], "]"]], RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["j", "=", "1"]], "3"], RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["b", "j"], "-", SubscriptBox["a", "4"]]], "]"]]]]]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["u", "=", "0"]], "\[Infinity]"], RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "x"]], ")"]], RowBox[List["-", "u"]]], RowBox[List["Pochhammer", "[", RowBox[List[SubscriptBox["a", "4"], ",", "u"]], "]"]]]], RowBox[List["u", "!"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", " ", "\[Pi]"]], " ", "\[ImaginaryI]", " ", SubscriptBox["a", "4"], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List["x", "-", "z"]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]]]], ")"]]]]], SuperscriptBox["x", RowBox[List["-", SubscriptBox["a", "4"]]]], RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List[SubscriptBox["a", "4"], "+", "u"]], ",", RowBox[List["1", "+", SubscriptBox["a", "4"], "-", SubscriptBox["b", "1"]]], ",", RowBox[List["1", "+", SubscriptBox["a", "4"], "-", SubscriptBox["b", "2"]]], ",", RowBox[List["1", "+", SubscriptBox["a", "4"], "-", SubscriptBox["b", "3"]]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", SubscriptBox["a", "4"], "-", SubscriptBox["a", "1"]]], ",", RowBox[List["1", "+", SubscriptBox["a", "4"], "-", SubscriptBox["a", "2"]]], ",", RowBox[List["1", "+", SubscriptBox["a", "4"], "-", SubscriptBox["a", "3"]]]]], "}"]], ",", FractionBox["1", "x"]]], "]"]], SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", "x"]], ")"]], "u"]]]]]]]]]]], "/;", RowBox[List[RowBox[List[SubscriptBox["\[ForAll]", RowBox[List[RowBox[List["{", RowBox[List["j", ",", "k"]], "}"]], ",", RowBox[List[RowBox[List[RowBox[List["{", RowBox[List["j", ",", "k"]], "}"]], "\[Element]", "Integers"]], "\[And]", RowBox[List["j", "\[NotEqual]", "k"]], "\[And]", RowBox[List["1", "\[LessEqual]", "j", "\[LessEqual]", "4"]], "\[And]", RowBox[List["1", "\[LessEqual]", "k", "\[LessEqual]", "4"]]]]]]], RowBox[List["(", "\[InvisibleSpace]", RowBox[List["!", RowBox[List["(", RowBox[List[RowBox[List[SubscriptBox["a", "j"], "-", SubscriptBox["a", "k"]]], "\[Element]", "Integers"]], ")"]]]], ")"]]]], "\[And]", RowBox[List["x", ">", "1"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 4 </mn> </msub> <msub> <mi> F </mi> <mn> 3 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> , </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> <mo> , </mo> <msub> <mi> a </mi> <mn> 4 </mn> </msub> </mrow> <mo> ; </mo> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> , </mo> <msub> <mi> b </mi> <mn> 3 </mn> </msub> </mrow> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;4&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;3&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[SubscriptBox[&quot;a&quot;, &quot;1&quot;], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[SubscriptBox[&quot;a&quot;, &quot;2&quot;], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[SubscriptBox[&quot;a&quot;, &quot;3&quot;], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[SubscriptBox[&quot;a&quot;, &quot;4&quot;], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[RowBox[List[TagBox[SubscriptBox[&quot;b&quot;, &quot;1&quot;], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[SubscriptBox[&quot;b&quot;, &quot;2&quot;], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[SubscriptBox[&quot;b&quot;, &quot;3&quot;], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], &quot;;&quot;, TagBox[&quot;z&quot;, HypergeometricPFQ, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> <mo> &#10869; </mo> <mrow> <mrow> <mfrac> <mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> - </mo> <msub> <mi> a </mi> <mn> 1 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msub> <mi> a </mi> <mn> 3 </mn> </msub> <mo> - </mo> <msub> <mi> a </mi> <mn> 1 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msub> <mi> a </mi> <mn> 4 </mn> </msub> <mo> - </mo> <msub> <mi> a </mi> <mn> 1 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8719; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mn> 3 </mn> </munderover> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <msub> <mi> b </mi> <mi> k </mi> </msub> <mo> ) </mo> </mrow> </mrow> </mrow> <mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <msub> <mi> a </mi> <mn> 4 </mn> </msub> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8719; </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mn> 3 </mn> </munderover> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msub> <mi> b </mi> <mi> j </mi> </msub> <mo> - </mo> <msub> <mi> a </mi> <mn> 1 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> u </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> &#8734; </mi> </munderover> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mi> x </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mi> u </mi> </mrow> </msup> <mo> &#8290; </mo> <semantics> <msub> <mrow> <mo> ( </mo> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> ) </mo> </mrow> <mi> u </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, SubscriptBox[&quot;a&quot;, &quot;1&quot;], &quot;)&quot;]], &quot;u&quot;], Pochhammer] </annotation> </semantics> </mrow> <mrow> <mi> u </mi> <mo> ! </mo> </mrow> </mfrac> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mo> - </mo> <mi> &#960; </mi> </mrow> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> &#8970; </mo> <mfrac> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> x </mi> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </mfrac> <mo> &#8971; </mo> </mrow> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> &#8290; </mo> <msup> <mi> x </mi> <mrow> <mo> - </mo> <msub> <mi> a </mi> <mn> 1 </mn> </msub> </mrow> </msup> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 4 </mn> </msub> <msub> <mi> F </mi> <mn> 3 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> u </mi> <mo> + </mo> <msub> <mi> a </mi> <mn> 1 </mn> </msub> </mrow> <mo> , </mo> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> b </mi> <mn> 3 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ; </mo> <mrow> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> a </mi> <mn> 4 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ; </mo> <mfrac> <mn> 1 </mn> <mi> x </mi> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;4&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;3&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List[&quot;u&quot;, &quot;+&quot;, SubscriptBox[&quot;a&quot;, &quot;1&quot;]]], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[SubscriptBox[&quot;a&quot;, &quot;1&quot;], &quot;-&quot;, SubscriptBox[&quot;b&quot;, &quot;1&quot;], &quot;+&quot;, &quot;1&quot;]], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[SubscriptBox[&quot;a&quot;, &quot;1&quot;], &quot;-&quot;, SubscriptBox[&quot;b&quot;, &quot;2&quot;], &quot;+&quot;, &quot;1&quot;]], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[SubscriptBox[&quot;a&quot;, &quot;1&quot;], &quot;-&quot;, SubscriptBox[&quot;b&quot;, &quot;3&quot;], &quot;+&quot;, &quot;1&quot;]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[RowBox[List[TagBox[RowBox[List[SubscriptBox[&quot;a&quot;, &quot;1&quot;], &quot;-&quot;, SubscriptBox[&quot;a&quot;, &quot;2&quot;], &quot;+&quot;, &quot;1&quot;]], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[SubscriptBox[&quot;a&quot;, &quot;1&quot;], &quot;-&quot;, SubscriptBox[&quot;a&quot;, &quot;3&quot;], &quot;+&quot;, &quot;1&quot;]], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[SubscriptBox[&quot;a&quot;, &quot;1&quot;], &quot;-&quot;, SubscriptBox[&quot;a&quot;, &quot;4&quot;], &quot;+&quot;, &quot;1&quot;]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], &quot;;&quot;, TagBox[FractionBox[&quot;1&quot;, &quot;x&quot;], HypergeometricPFQ, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mi> x </mi> </mrow> <mo> ) </mo> </mrow> <mi> u </mi> </msup> </mrow> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msub> <mi> a </mi> <mn> 3 </mn> </msub> <mo> - </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msub> <mi> a </mi> <mn> 4 </mn> </msub> <mo> - </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8719; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mn> 3 </mn> </munderover> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <msub> <mi> b </mi> <mi> k </mi> </msub> <mo> ) </mo> </mrow> </mrow> </mrow> <mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <msub> <mi> a </mi> <mn> 4 </mn> </msub> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8719; </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mn> 3 </mn> </munderover> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msub> <mi> b </mi> <mi> j </mi> </msub> <mo> - </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> u </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> &#8734; </mi> </munderover> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mi> x </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mi> u </mi> </mrow> </msup> <mo> &#8290; </mo> <semantics> <msub> <mrow> <mo> ( </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> ) </mo> </mrow> <mi> u </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, SubscriptBox[&quot;a&quot;, &quot;2&quot;], &quot;)&quot;]], &quot;u&quot;], Pochhammer] </annotation> </semantics> </mrow> <mrow> <mi> u </mi> <mo> ! </mo> </mrow> </mfrac> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mo> - </mo> <mi> &#960; </mi> </mrow> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> &#8970; </mo> <mfrac> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> x </mi> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </mfrac> <mo> &#8971; </mo> </mrow> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> &#8290; </mo> <msup> <mi> x </mi> <mrow> <mo> - </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> </mrow> </msup> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 4 </mn> </msub> <msub> <mi> F </mi> <mn> 3 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> u </mi> <mo> + </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> </mrow> <mo> , </mo> <mrow> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> - </mo> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> - </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> - </mo> <msub> <mi> b </mi> <mn> 3 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ; </mo> <mrow> <mrow> <mrow> <mo> - </mo> <msub> <mi> a </mi> <mn> 1 </mn> </msub> </mrow> <mo> + </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> - </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> - </mo> <msub> <mi> a </mi> <mn> 4 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ; </mo> <mfrac> <mn> 1 </mn> <mi> x </mi> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;4&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;3&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List[&quot;u&quot;, &quot;+&quot;, SubscriptBox[&quot;a&quot;, &quot;2&quot;]]], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[SubscriptBox[&quot;a&quot;, &quot;2&quot;], &quot;-&quot;, SubscriptBox[&quot;b&quot;, &quot;1&quot;], &quot;+&quot;, &quot;1&quot;]], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[SubscriptBox[&quot;a&quot;, &quot;2&quot;], &quot;-&quot;, SubscriptBox[&quot;b&quot;, &quot;2&quot;], &quot;+&quot;, &quot;1&quot;]], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[SubscriptBox[&quot;a&quot;, &quot;2&quot;], &quot;-&quot;, SubscriptBox[&quot;b&quot;, &quot;3&quot;], &quot;+&quot;, &quot;1&quot;]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[RowBox[List[TagBox[RowBox[List[RowBox[List[&quot;-&quot;, SubscriptBox[&quot;a&quot;, &quot;1&quot;]]], &quot;+&quot;, SubscriptBox[&quot;a&quot;, &quot;2&quot;], &quot;+&quot;, &quot;1&quot;]], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[SubscriptBox[&quot;a&quot;, &quot;2&quot;], &quot;-&quot;, SubscriptBox[&quot;a&quot;, &quot;3&quot;], &quot;+&quot;, &quot;1&quot;]], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[SubscriptBox[&quot;a&quot;, &quot;2&quot;], &quot;-&quot;, SubscriptBox[&quot;a&quot;, &quot;4&quot;], &quot;+&quot;, &quot;1&quot;]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], &quot;;&quot;, TagBox[FractionBox[&quot;1&quot;, &quot;x&quot;], HypergeometricPFQ, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mi> x </mi> </mrow> <mo> ) </mo> </mrow> <mi> u </mi> </msup> </mrow> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> - </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msub> <mi> a </mi> <mn> 4 </mn> </msub> <mo> - </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8719; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mn> 3 </mn> </munderover> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <msub> <mi> b </mi> <mi> k </mi> </msub> <mo> ) </mo> </mrow> </mrow> </mrow> <mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <msub> <mi> a </mi> <mn> 4 </mn> </msub> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8719; </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mn> 3 </mn> </munderover> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msub> <mi> b </mi> <mi> j </mi> </msub> <mo> - </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> u </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> &#8734; </mi> </munderover> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mi> x </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mi> u </mi> </mrow> </msup> <mo> &#8290; </mo> <semantics> <msub> <mrow> <mo> ( </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> <mo> ) </mo> </mrow> <mi> u </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, SubscriptBox[&quot;a&quot;, &quot;3&quot;], &quot;)&quot;]], &quot;u&quot;], Pochhammer] </annotation> </semantics> </mrow> <mrow> <mi> u </mi> <mo> ! </mo> </mrow> </mfrac> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mo> - </mo> <mi> &#960; </mi> </mrow> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> &#8970; </mo> <mfrac> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> x </mi> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </mfrac> <mo> &#8971; </mo> </mrow> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> &#8290; </mo> <msup> <mi> x </mi> <mrow> <mo> - </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> </mrow> </msup> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 4 </mn> </msub> <msub> <mi> F </mi> <mn> 3 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> u </mi> <mo> + </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> </mrow> <mo> , </mo> <mrow> <msub> <mi> a </mi> <mn> 3 </mn> </msub> <mo> - </mo> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <msub> <mi> a </mi> <mn> 3 </mn> </msub> <mo> - </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <msub> <mi> a </mi> <mn> 3 </mn> </msub> <mo> - </mo> <msub> <mi> b </mi> <mn> 3 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ; </mo> <mrow> <mrow> <mrow> <mo> - </mo> <msub> <mi> a </mi> <mn> 1 </mn> </msub> </mrow> <mo> + </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mrow> <mo> - </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> </mrow> <mo> + </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <msub> <mi> a </mi> <mn> 3 </mn> </msub> <mo> - </mo> <msub> <mi> a </mi> <mn> 4 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ; </mo> <mfrac> <mn> 1 </mn> <mi> x </mi> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;4&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;3&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List[&quot;u&quot;, &quot;+&quot;, SubscriptBox[&quot;a&quot;, &quot;3&quot;]]], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[SubscriptBox[&quot;a&quot;, &quot;3&quot;], &quot;-&quot;, SubscriptBox[&quot;b&quot;, &quot;1&quot;], &quot;+&quot;, &quot;1&quot;]], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[SubscriptBox[&quot;a&quot;, &quot;3&quot;], &quot;-&quot;, SubscriptBox[&quot;b&quot;, &quot;2&quot;], &quot;+&quot;, &quot;1&quot;]], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[SubscriptBox[&quot;a&quot;, &quot;3&quot;], &quot;-&quot;, SubscriptBox[&quot;b&quot;, &quot;3&quot;], &quot;+&quot;, &quot;1&quot;]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[RowBox[List[TagBox[RowBox[List[RowBox[List[&quot;-&quot;, SubscriptBox[&quot;a&quot;, &quot;1&quot;]]], &quot;+&quot;, SubscriptBox[&quot;a&quot;, &quot;3&quot;], &quot;+&quot;, &quot;1&quot;]], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[RowBox[List[&quot;-&quot;, SubscriptBox[&quot;a&quot;, &quot;2&quot;]]], &quot;+&quot;, SubscriptBox[&quot;a&quot;, &quot;3&quot;], &quot;+&quot;, &quot;1&quot;]], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[SubscriptBox[&quot;a&quot;, &quot;3&quot;], &quot;-&quot;, SubscriptBox[&quot;a&quot;, &quot;4&quot;], &quot;+&quot;, &quot;1&quot;]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], &quot;;&quot;, TagBox[FractionBox[&quot;1&quot;, &quot;x&quot;], HypergeometricPFQ, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mi> x </mi> </mrow> <mo> ) </mo> </mrow> <mi> u </mi> </msup> </mrow> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> a </mi> <mn> 4 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> - </mo> <msub> <mi> a </mi> <mn> 4 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msub> <mi> a </mi> <mn> 3 </mn> </msub> <mo> - </mo> <msub> <mi> a </mi> <mn> 4 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8719; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mn> 3 </mn> </munderover> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <msub> <mi> b </mi> <mi> k </mi> </msub> <mo> ) </mo> </mrow> </mrow> </mrow> <mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8719; </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mn> 3 </mn> </munderover> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msub> <mi> b </mi> <mi> j </mi> </msub> <mo> - </mo> <msub> <mi> a </mi> <mn> 4 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> u </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> &#8734; </mi> </munderover> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mi> x </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mi> u </mi> </mrow> </msup> <mo> &#8290; </mo> <semantics> <msub> <mrow> <mo> ( </mo> <msub> <mi> a </mi> <mn> 4 </mn> </msub> <mo> ) </mo> </mrow> <mi> u </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, SubscriptBox[&quot;a&quot;, &quot;4&quot;], &quot;)&quot;]], &quot;u&quot;], Pochhammer] </annotation> </semantics> </mrow> <mrow> <mi> u </mi> <mo> ! </mo> </mrow> </mfrac> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mo> - </mo> <mi> &#960; </mi> </mrow> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <msub> <mi> a </mi> <mn> 4 </mn> </msub> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> &#8970; </mo> <mfrac> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> x </mi> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </mfrac> <mo> &#8971; </mo> </mrow> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> &#8290; </mo> <msup> <mi> x </mi> <mrow> <mo> - </mo> <msub> <mi> a </mi> <mn> 4 </mn> </msub> </mrow> </msup> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 4 </mn> </msub> <msub> <mi> F </mi> <mn> 3 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> u </mi> <mo> + </mo> <msub> <mi> a </mi> <mn> 4 </mn> </msub> </mrow> <mo> , </mo> <mrow> <msub> <mi> a </mi> <mn> 4 </mn> </msub> <mo> - </mo> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <msub> <mi> a </mi> <mn> 4 </mn> </msub> <mo> - </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <msub> <mi> a </mi> <mn> 4 </mn> </msub> <mo> - </mo> <msub> <mi> b </mi> <mn> 3 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ; </mo> <mrow> <mrow> <mrow> <mo> - </mo> <msub> <mi> a </mi> <mn> 1 </mn> </msub> </mrow> <mo> + </mo> <msub> <mi> a </mi> <mn> 4 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mrow> <mo> - </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> </mrow> <mo> + </mo> <msub> <mi> a </mi> <mn> 4 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mrow> <mo> - </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> </mrow> <mo> + </mo> <msub> <mi> a </mi> <mn> 4 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ; </mo> <mfrac> <mn> 1 </mn> <mi> x </mi> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;4&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;3&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List[&quot;u&quot;, &quot;+&quot;, SubscriptBox[&quot;a&quot;, &quot;4&quot;]]], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[SubscriptBox[&quot;a&quot;, &quot;4&quot;], &quot;-&quot;, SubscriptBox[&quot;b&quot;, &quot;1&quot;], &quot;+&quot;, &quot;1&quot;]], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[SubscriptBox[&quot;a&quot;, &quot;4&quot;], &quot;-&quot;, SubscriptBox[&quot;b&quot;, &quot;2&quot;], &quot;+&quot;, &quot;1&quot;]], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[SubscriptBox[&quot;a&quot;, &quot;4&quot;], &quot;-&quot;, SubscriptBox[&quot;b&quot;, &quot;3&quot;], &quot;+&quot;, &quot;1&quot;]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[RowBox[List[TagBox[RowBox[List[RowBox[List[&quot;-&quot;, SubscriptBox[&quot;a&quot;, &quot;1&quot;]]], &quot;+&quot;, SubscriptBox[&quot;a&quot;, &quot;4&quot;], &quot;+&quot;, &quot;1&quot;]], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[RowBox[List[&quot;-&quot;, SubscriptBox[&quot;a&quot;, &quot;2&quot;]]], &quot;+&quot;, SubscriptBox[&quot;a&quot;, &quot;4&quot;], &quot;+&quot;, &quot;1&quot;]], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[RowBox[List[&quot;-&quot;, SubscriptBox[&quot;a&quot;, &quot;3&quot;]]], &quot;+&quot;, SubscriptBox[&quot;a&quot;, &quot;4&quot;], &quot;+&quot;, &quot;1&quot;]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], &quot;;&quot;, TagBox[FractionBox[&quot;1&quot;, &quot;x&quot;], HypergeometricPFQ, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mi> x </mi> </mrow> <mo> ) </mo> </mrow> <mi> u </mi> </msup> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <msub> <mo> &#8704; </mo> <mrow> <mrow> <mo> { </mo> <mrow> <mi> j </mi> <mo> , </mo> <mi> k </mi> </mrow> <mo> } </mo> </mrow> <mo> , </mo> <mrow> <mrow> <mrow> <mo> { </mo> <mrow> <mi> j </mi> <mo> , </mo> <mi> k </mi> </mrow> <mo> } </mo> </mrow> <mo> &#8712; </mo> <semantics> <mi> &#8484; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubleStruckCapitalZ]&quot;, Function[Integers]] </annotation> </semantics> </mrow> <mo> &#8743; </mo> <mrow> <mi> j </mi> <mo> &#8800; </mo> <mi> k </mi> </mrow> <mo> &#8743; </mo> <mrow> <mn> 1 </mn> <mo> &#8804; </mo> <mi> j </mi> <mo> &#8804; </mo> <mn> 4 </mn> </mrow> <mo> &#8743; </mo> <mrow> <mn> 1 </mn> <mo> &#8804; </mo> <mi> k </mi> <mo> &#8804; </mo> <mn> 4 </mn> </mrow> </mrow> </mrow> </msub> <mrow> <mo> ( </mo> <mrow> <mrow> <msub> <mi> a </mi> <mi> j </mi> </msub> <mo> - </mo> <msub> <mi> a </mi> <mi> k </mi> </msub> </mrow> <mo> &#8713; </mo> <semantics> <mi> &#8484; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubleStruckCapitalZ]&quot;, Function[Integers]] </annotation> </semantics> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#8743; </mo> <mrow> <mi> x </mi> <mo> &gt; </mo> <mn> 1 </mn> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> </list> <list> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> </list> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> <apply> <product /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <cn type='integer'> 3 </cn> </uplimit> <apply> <ci> Gamma </ci> <apply> <ci> Subscript </ci> <ci> b </ci> <ci> k </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <ci> Gamma </ci> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <product /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <cn type='integer'> 3 </cn> </uplimit> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> b </ci> <ci> j </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <sum /> <bvar> <ci> u </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> x </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> u </ci> </apply> </apply> <apply> <ci> Pochhammer </ci> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <ci> u </ci> </apply> <apply> <power /> <apply> <factorial /> <ci> u </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <pi /> </apply> <imaginaryi /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <floor /> <apply> <times /> <apply> <arg /> <apply> <plus /> <ci> x </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <power /> <ci> x </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <plus /> <ci> u </ci> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </list> <list> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </list> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> x </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> x </ci> </apply> </apply> <ci> u </ci> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <apply> <product /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <cn type='integer'> 3 </cn> </uplimit> <apply> <ci> Gamma </ci> <apply> <ci> Subscript </ci> <ci> b </ci> <ci> k </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <ci> Gamma </ci> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <product /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <cn type='integer'> 3 </cn> </uplimit> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> b </ci> <ci> j </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <sum /> <bvar> <ci> u </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> x </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> u </ci> </apply> </apply> <apply> <ci> Pochhammer </ci> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <ci> u </ci> </apply> <apply> <power /> <apply> <factorial /> <ci> u </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <pi /> </apply> <imaginaryi /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <floor /> <apply> <times /> <apply> <arg /> <apply> <plus /> <ci> x </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <power /> <ci> x </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <plus /> <ci> u </ci> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </list> <list> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </list> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> x </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> x </ci> </apply> </apply> <ci> u </ci> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> </apply> <apply> <product /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <cn type='integer'> 3 </cn> </uplimit> <apply> <ci> Gamma </ci> <apply> <ci> Subscript </ci> <ci> b </ci> <ci> k </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <ci> Gamma </ci> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <product /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <cn type='integer'> 3 </cn> </uplimit> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> b </ci> <ci> j </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <sum /> <bvar> <ci> u </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> x </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> u </ci> </apply> </apply> <apply> <ci> Pochhammer </ci> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> <ci> u </ci> </apply> <apply> <power /> <apply> <factorial /> <ci> u </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <pi /> </apply> <imaginaryi /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <floor /> <apply> <times /> <apply> <arg /> <apply> <plus /> <ci> x </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <power /> <ci> x </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <plus /> <ci> u </ci> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </list> <list> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </list> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> x </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> x </ci> </apply> </apply> <ci> u </ci> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> </apply> <apply> <product /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <cn type='integer'> 3 </cn> </uplimit> <apply> <ci> Gamma </ci> <apply> <ci> Subscript </ci> <ci> b </ci> <ci> k </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <ci> Gamma </ci> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <product /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <cn type='integer'> 3 </cn> </uplimit> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> b </ci> <ci> j </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <sum /> <bvar> <ci> u </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> x </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> u </ci> </apply> </apply> <apply> <ci> Pochhammer </ci> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> <ci> u </ci> </apply> <apply> <power /> <apply> <factorial /> <ci> u </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <pi /> </apply> <imaginaryi /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <floor /> <apply> <times /> <apply> <arg /> <apply> <plus /> <ci> x </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <power /> <ci> x </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <plus /> <ci> u </ci> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </list> <list> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> <cn type='integer'> 1 </cn> </apply> </list> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> x </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> x </ci> </apply> </apply> <ci> u </ci> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <forall /> <bvar> <list> <ci> j </ci> <ci> k </ci> </list> </bvar> <bvar> <apply> <and /> <apply> <in /> <list> <ci> j </ci> <ci> k </ci> </list> <integers /> </apply> <apply> <neq /> <ci> j </ci> <ci> k </ci> </apply> <apply> <leq /> <cn type='integer'> 1 </cn> <ci> j </ci> <cn type='integer'> 4 </cn> </apply> <apply> <leq /> <cn type='integer'> 1 </cn> <ci> k </ci> <cn type='integer'> 4 </cn> </apply> </apply> </bvar> <apply> <notin /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <ci> j </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <ci> k </ci> </apply> </apply> </apply> <integers /> </apply> </apply> <apply> <gt /> <ci> x </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a_", "1"], ",", SubscriptBox["a_", "2"], ",", SubscriptBox["a_", "3"], ",", SubscriptBox["a_", "4"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b_", "1"], ",", SubscriptBox["b_", "2"], ",", SubscriptBox["b_", "3"]]], "}"]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["aa", "2"], "-", SubscriptBox["aa", "1"]]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["aa", "3"], "-", SubscriptBox["aa", "1"]]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["aa", "4"], "-", SubscriptBox["aa", "1"]]], "]"]], " ", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "1"]], "3"], RowBox[List["Gamma", "[", SubscriptBox["b", "k"], "]"]]]]]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["u", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "x"]], ")"]], RowBox[List["-", "u"]]], " ", RowBox[List["Pochhammer", "[", RowBox[List[SubscriptBox["aa", "1"], ",", "u"]], "]"]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[Pi]"]], " ", "\[ImaginaryI]", " ", SubscriptBox["aa", "1"], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List["x", "-", "z"]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]]]], ")"]]]]], " ", SuperscriptBox["x", RowBox[List["-", SubscriptBox["aa", "1"]]]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List[SubscriptBox["aa", "1"], "+", "u"]], ",", RowBox[List["1", "+", SubscriptBox["aa", "1"], "-", SubscriptBox["bb", "1"]]], ",", RowBox[List["1", "+", SubscriptBox["aa", "1"], "-", SubscriptBox["bb", "2"]]], ",", RowBox[List["1", "+", SubscriptBox["aa", "1"], "-", SubscriptBox["bb", "3"]]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", SubscriptBox["aa", "1"], "-", SubscriptBox["aa", "2"]]], ",", RowBox[List["1", "+", SubscriptBox["aa", "1"], "-", SubscriptBox["aa", "3"]]], ",", RowBox[List["1", "+", SubscriptBox["aa", "1"], "-", SubscriptBox["aa", "4"]]]]], "}"]], ",", FractionBox["1", "x"]]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", "x"]], ")"]], "u"]]], RowBox[List["u", "!"]]]]]]], RowBox[List[RowBox[List["Gamma", "[", SubscriptBox["aa", "2"], "]"]], " ", RowBox[List["Gamma", "[", SubscriptBox["aa", "3"], "]"]], " ", RowBox[List["Gamma", "[", SubscriptBox["aa", "4"], "]"]], " ", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["j", "=", "1"]], "3"], RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["bb", "j"], "-", SubscriptBox["aa", "1"]]], "]"]]]]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["aa", "1"], "-", SubscriptBox["aa", "2"]]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["aa", "3"], "-", SubscriptBox["aa", "2"]]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["aa", "4"], "-", SubscriptBox["aa", "2"]]], "]"]], " ", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "1"]], "3"], RowBox[List["Gamma", "[", SubscriptBox["b", "k"], "]"]]]]]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["u", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "x"]], ")"]], RowBox[List["-", "u"]]], " ", RowBox[List["Pochhammer", "[", RowBox[List[SubscriptBox["aa", "2"], ",", "u"]], "]"]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[Pi]"]], " ", "\[ImaginaryI]", " ", SubscriptBox["aa", "2"], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List["x", "-", "z"]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]]]], ")"]]]]], " ", SuperscriptBox["x", RowBox[List["-", SubscriptBox["aa", "2"]]]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List[SubscriptBox["aa", "2"], "+", "u"]], ",", RowBox[List["1", "+", SubscriptBox["aa", "2"], "-", SubscriptBox["bb", "1"]]], ",", RowBox[List["1", "+", SubscriptBox["aa", "2"], "-", SubscriptBox["bb", "2"]]], ",", RowBox[List["1", "+", SubscriptBox["aa", "2"], "-", SubscriptBox["bb", "3"]]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", SubscriptBox["aa", "2"], "-", SubscriptBox["aa", "1"]]], ",", RowBox[List["1", "+", SubscriptBox["aa", "2"], "-", SubscriptBox["aa", "3"]]], ",", RowBox[List["1", "+", SubscriptBox["aa", "2"], "-", SubscriptBox["aa", "4"]]]]], "}"]], ",", FractionBox["1", "x"]]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", "x"]], ")"]], "u"]]], RowBox[List["u", "!"]]]]]]], RowBox[List[RowBox[List["Gamma", "[", SubscriptBox["aa", "1"], "]"]], " ", RowBox[List["Gamma", "[", SubscriptBox["aa", "3"], "]"]], " ", RowBox[List["Gamma", "[", SubscriptBox["aa", "4"], "]"]], " ", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["j", "=", "1"]], "3"], RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["bb", "j"], "-", SubscriptBox["aa", "2"]]], "]"]]]]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["aa", "1"], "-", SubscriptBox["aa", "3"]]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["aa", "2"], "-", SubscriptBox["aa", "3"]]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["aa", "4"], "-", SubscriptBox["aa", "3"]]], "]"]], " ", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "1"]], "3"], RowBox[List["Gamma", "[", SubscriptBox["b", "k"], "]"]]]]]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["u", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "x"]], ")"]], RowBox[List["-", "u"]]], " ", RowBox[List["Pochhammer", "[", RowBox[List[SubscriptBox["aa", "3"], ",", "u"]], "]"]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[Pi]"]], " ", "\[ImaginaryI]", " ", SubscriptBox["aa", "3"], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List["x", "-", "z"]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]]]], ")"]]]]], " ", SuperscriptBox["x", RowBox[List["-", SubscriptBox["aa", "3"]]]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List[SubscriptBox["aa", "3"], "+", "u"]], ",", RowBox[List["1", "+", SubscriptBox["aa", "3"], "-", SubscriptBox["bb", "1"]]], ",", RowBox[List["1", "+", SubscriptBox["aa", "3"], "-", SubscriptBox["bb", "2"]]], ",", RowBox[List["1", "+", SubscriptBox["aa", "3"], "-", SubscriptBox["bb", "3"]]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", SubscriptBox["aa", "3"], "-", SubscriptBox["aa", "1"]]], ",", RowBox[List["1", "+", SubscriptBox["aa", "3"], "-", SubscriptBox["aa", "2"]]], ",", RowBox[List["1", "+", SubscriptBox["aa", "3"], "-", SubscriptBox["aa", "4"]]]]], "}"]], ",", FractionBox["1", "x"]]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", "x"]], ")"]], "u"]]], RowBox[List["u", "!"]]]]]]], RowBox[List[RowBox[List["Gamma", "[", SubscriptBox["aa", "1"], "]"]], " ", RowBox[List["Gamma", "[", SubscriptBox["aa", "2"], "]"]], " ", RowBox[List["Gamma", "[", SubscriptBox["aa", "4"], "]"]], " ", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["j", "=", "1"]], "3"], RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["bb", "j"], "-", SubscriptBox["aa", "3"]]], "]"]]]]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["aa", "1"], "-", SubscriptBox["aa", "4"]]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["aa", "2"], "-", SubscriptBox["aa", "4"]]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["aa", "3"], "-", SubscriptBox["aa", "4"]]], "]"]], " ", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "1"]], "3"], RowBox[List["Gamma", "[", SubscriptBox["b", "k"], "]"]]]]]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["u", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "x"]], ")"]], RowBox[List["-", "u"]]], " ", RowBox[List["Pochhammer", "[", RowBox[List[SubscriptBox["aa", "4"], ",", "u"]], "]"]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[Pi]"]], " ", "\[ImaginaryI]", " ", SubscriptBox["aa", "4"], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List["x", "-", "z"]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]]]], ")"]]]]], " ", SuperscriptBox["x", RowBox[List["-", SubscriptBox["aa", "4"]]]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List[SubscriptBox["aa", "4"], "+", "u"]], ",", RowBox[List["1", "+", SubscriptBox["aa", "4"], "-", SubscriptBox["bb", "1"]]], ",", RowBox[List["1", "+", SubscriptBox["aa", "4"], "-", SubscriptBox["bb", "2"]]], ",", RowBox[List["1", "+", SubscriptBox["aa", "4"], "-", SubscriptBox["bb", "3"]]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", SubscriptBox["aa", "4"], "-", SubscriptBox["aa", "1"]]], ",", RowBox[List["1", "+", SubscriptBox["aa", "4"], "-", SubscriptBox["aa", "2"]]], ",", RowBox[List["1", "+", SubscriptBox["aa", "4"], "-", SubscriptBox["aa", "3"]]]]], "}"]], ",", FractionBox["1", "x"]]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", "x"]], ")"]], "u"]]], RowBox[List["u", "!"]]]]]]], RowBox[List[RowBox[List["Gamma", "[", SubscriptBox["aa", "1"], "]"]], " ", RowBox[List["Gamma", "[", SubscriptBox["aa", "2"], "]"]], " ", RowBox[List["Gamma", "[", SubscriptBox["aa", "3"], "]"]], " ", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["j", "=", "1"]], "3"], RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["bb", "j"], "-", SubscriptBox["aa", "4"]]], "]"]]]]]]]]], "/;", RowBox[List[RowBox[List[SubscriptBox["\[ForAll]", RowBox[List[RowBox[List["{", RowBox[List["j", ",", "k"]], "}"]], ",", RowBox[List[RowBox[List[RowBox[List["{", RowBox[List["j", ",", "k"]], "}"]], "\[Element]", "Integers"]], "&&", RowBox[List["j", "\[NotEqual]", "k"]], "&&", RowBox[List["1", "\[LessEqual]", "j", "\[LessEqual]", "4"]], "&&", RowBox[List["1", "\[LessEqual]", "k", "\[LessEqual]", "4"]]]]]]], RowBox[List["(", RowBox[List["!", RowBox[List[RowBox[List[SubscriptBox["a", "j"], "-", SubscriptBox["a", "k"]]], "\[Element]", "Integers"]]]], ")"]]]], "&&", RowBox[List["x", ">", "1"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02





© 1998-2014 Wolfram Research, Inc.