HypergeometricPFQ
Hypergeometric Functions
HypergeometricPFQ[{
a
_{1}
,
a
_{2}
,
a
_{3}
,
a
_{4}
},{
b
_{1}
,
b
_{2}
,
b
_{3}
},
z
]
Series representations
Generalized power series
Expansions at
z
==1 (10 formulas)
The general formulas (4 formulas)
The logarithmic cases (3 formulas)
The major terms in the general formula for expansions of function
_{4}
F
_{3}
(
a
_{1}
,
a
_{2}
,
a
_{3}
,
a
_{4}
;
b
_{1}
,
b
_{2}
,
b
_{3}
;
z
) at
z
==1 (3 formulas)
HypergeometricPFQ[{},{},
z
]
HypergeometricPFQ[{},{
b
},
z
]
HypergeometricPFQ[{
a
},{},
z
]
HypergeometricPFQ[{
a
},{
b
},
z
]
HypergeometricPFQ[{
a
_{1}
},{
b
_{1}
,
b
_{2}
},
z
]
HypergeometricPFQ[{
a
_{1}
,
a
_{2}
},{
b
_{1}
},
z
]
HypergeometricPFQ[{
a
_{1}
,
a
_{2}
},{
b
_{1}
,
b
_{2}
},
z
]
HypergeometricPFQ[{
a
_{1}
,
a
_{2}
},{
b
_{1}
,
b
_{2}
,
b
_{3}
},
z
]
HypergeometricPFQ[{
a
_{1}
,
a
_{2}
,
a
_{3}
},{
b
_{1}
,
b
_{2}
},
z
]
HypergeometricPFQ[{
a
_{1}
,
a
_{2}
,
a
_{3}
,
a
_{4}
,
a
_{5}
},{
b
_{1}
,
b
_{2}
,
b
_{3}
,
b
_{4}
},
z
]
HypergeometricPFQ[{
a
_{1}
,
a
_{2}
,
a
_{3}
,
a
_{4}
,
a
_{5}
,
a
_{6}
},{
b
_{1}
,
b
_{2}
,
b
_{3}
,
b
_{4}
,
b
_{5}
},
z
]
HypergeometricPFQ[{
a
_{1}
,...,
a
_{p}
},{
b
_{1}
,...,
b
_{q}
},
z
]
© 1998- Wolfram Research, Inc.