Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
HypergeometricPFQ






Mathematica Notation

Traditional Notation









Hypergeometric Functions > HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] > Series representations > Generalized power series > Expansions at z==1 > The major terms in the general formula for expansions of function 4F3(a1,a2,a3,a4;b1,b2,b3;z) at z==1





http://functions.wolfram.com/07.28.06.0013.01









  


  










Input Form





HypergeometricPFQ[{Subscript[a, 1], Subscript[a, 2], Subscript[a, 3], Subscript[a, 4]}, {Subscript[b, 1], Subscript[b, 2], Subscript[b, 3]}, z] \[Proportional] ((Gamma[Subscript[\[Psi], 3]] Product[Gamma[Subscript[b, k]], {k, 1, 3}])/ Product[Gamma[Subscript[a, k]], {k, 3, 4}]) Sum[((Pochhammer[Subscript[\[Psi], 3], k] HypergeometricPFQExpansionCoefficient[{Subscript[a, 1], Subscript[a, 2], Subscript[a, 3], Subscript[a, 4]}, {Subscript[b, 1], Subscript[b, 2], Subscript[b, 3]}, k])/ (Gamma[Subscript[\[Psi], 3] + Subscript[a, 1] + k] Gamma[Subscript[\[Psi], 3] + Subscript[a, 2] + k])) (1 + O[z - 1]), {k, 0, Infinity}] + ((Gamma[-Subscript[\[Psi], 3]] Product[Gamma[Subscript[b, k]], {k, 1, 3}])/ Product[Gamma[Subscript[a, k]], {k, 1, 4}]) (1 - z)^Subscript[\[Psi], 3] (1 + O[z - 1]) /; (z -> 1) && Subscript[\[Psi], 3] == Sum[Subscript[b, j], {j, 1, 3}] - Sum[Subscript[a, j], {j, 1, 4}] && Re[Subscript[\[Psi], 3]] > 0 && Re[Subscript[a, 3]] > 0 && Re[Subscript[a, 4]] > 0










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a", "1"], ",", SubscriptBox["a", "2"], ",", SubscriptBox["a", "3"], ",", SubscriptBox["a", "4"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b", "1"], ",", SubscriptBox["b", "2"], ",", SubscriptBox["b", "3"]]], "}"]], ",", "z"]], "]"]], "\[Proportional]", RowBox[List[RowBox[List[FractionBox[RowBox[List[RowBox[List["Gamma", "[", SubscriptBox["\[Psi]", "3"], "]"]], RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "1"]], "3"], RowBox[List["Gamma", "[", SubscriptBox["b", "k"], "]"]]]]]], RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "3"]], "4"], RowBox[List["Gamma", "[", SubscriptBox["a", "k"], "]"]]]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[SubscriptBox["\[Psi]", "3"], ",", "k"]], "]"]], RowBox[List["HypergeometricPFQExpansionCoefficient", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a", "1"], ",", SubscriptBox["a", "2"], ",", SubscriptBox["a", "3"], ",", SubscriptBox["a", "4"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b", "1"], ",", SubscriptBox["b", "2"], ",", SubscriptBox["b", "3"]]], "}"]], ",", "k"]], "]"]]]], ")"]], "/", RowBox[List["(", RowBox[List[RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["\[Psi]", "3"], "+", SubscriptBox["a", "1"], "+", "k"]], "]"]], RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["\[Psi]", "3"], "+", SubscriptBox["a", "2"], "+", "k"]], "]"]]]], ")"]]]], RowBox[List["(", RowBox[List["1", "+", RowBox[List["O", "[", RowBox[List["z", "-", "1"]], "]"]]]], ")"]]]]]]]], "+", RowBox[List[FractionBox[RowBox[List[RowBox[List["Gamma", "[", RowBox[List["-", SubscriptBox["\[Psi]", "3"]]], "]"]], RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "1"]], "3"], RowBox[List["Gamma", "[", SubscriptBox["b", "k"], "]"]]]]]], RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "1"]], "4"], RowBox[List["Gamma", "[", SubscriptBox["a", "k"], "]"]]]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], SubscriptBox["\[Psi]", "3"]], RowBox[List["(", RowBox[List["1", "+", RowBox[List["O", "[", RowBox[List["z", "-", "1"]], "]"]]]], ")"]]]]]]]], "/;", RowBox[List[RowBox[List["(", RowBox[List["z", "\[Rule]", "1"]], ")"]], "\[And]", RowBox[List[SubscriptBox["\[Psi]", "3"], "\[Equal]", RowBox[List[RowBox[List[StyleBox[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "1"]], "3"], Rule[LimitsPositioningTokens, List["\[Sum]", "\[Product]", "\[Intersection]", "\[Union]", "\[UnionPlus]", "\[Wedge]", "\[Vee]", "lim", "max", "min", "\[CirclePlus]", "\[CircleMinus]", "\[CircleTimes]", "\[CircleDot]"]]], SubscriptBox["b", "j"]]], "-", RowBox[List[StyleBox[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "1"]], "4"], Rule[LimitsPositioningTokens, List["\[Sum]", "\[Product]", "\[Intersection]", "\[Union]", "\[UnionPlus]", "\[Wedge]", "\[Vee]", "lim", "max", "min", "\[CirclePlus]", "\[CircleMinus]", "\[CircleTimes]", "\[CircleDot]"]]], SubscriptBox["a", "j"]]]]]]], "\[And]", RowBox[List[RowBox[List["Re", "[", SubscriptBox["\[Psi]", "3"], "]"]], ">", "0"]], "\[And]", RowBox[List[RowBox[List["Re", "[", SubscriptBox["a", "3"], "]"]], ">", "0"]], "\[And]", RowBox[List[RowBox[List["Re", "[", SubscriptBox["a", "4"], "]"]], ">", "0"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 4 </mn> </msub> <msub> <mi> F </mi> <mn> 3 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> , </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> <mo> , </mo> <msub> <mi> a </mi> <mn> 4 </mn> </msub> </mrow> <mo> ; </mo> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> , </mo> <msub> <mi> b </mi> <mn> 3 </mn> </msub> </mrow> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;4&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;3&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[SubscriptBox[&quot;a&quot;, &quot;1&quot;], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[SubscriptBox[&quot;a&quot;, &quot;2&quot;], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[SubscriptBox[&quot;a&quot;, &quot;3&quot;], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[SubscriptBox[&quot;a&quot;, &quot;4&quot;], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[RowBox[List[TagBox[SubscriptBox[&quot;b&quot;, &quot;1&quot;], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[SubscriptBox[&quot;b&quot;, &quot;2&quot;], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[SubscriptBox[&quot;b&quot;, &quot;3&quot;], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], &quot;;&quot;, TagBox[&quot;z&quot;, HypergeometricPFQ, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> <mo> &#8733; </mo> <mrow> <mrow> <mfrac> <mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <msub> <mi> &#968; </mi> <mn> 3 </mn> </msub> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8719; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mn> 3 </mn> </munderover> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <msub> <mi> b </mi> <mi> k </mi> </msub> <mo> ) </mo> </mrow> </mrow> </mrow> <mrow> <munderover> <mo> &#8719; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 3 </mn> </mrow> <mn> 4 </mn> </munderover> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <msub> <mi> a </mi> <mi> k </mi> </msub> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <semantics> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> &#8734; </mi> </munderover> <mrow> <mfrac> <mrow> <msub> <mrow> <mo> ( </mo> <msub> <mi> &#968; </mi> <mn> 3 </mn> </msub> <mo> ) </mo> </mrow> <mi> k </mi> </msub> <mo> &#8290; </mo> <mrow> <msubsup> <mi> &#8496; </mi> <mi> k </mi> <mrow> <mo> ( </mo> <mn> 3 </mn> <mo> ) </mo> </mrow> </msubsup> <mo> ( </mo> <mrow> <mrow> <mo> { </mo> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> , </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> <mo> , </mo> <msub> <mi> a </mi> <mn> 4 </mn> </msub> </mrow> <mo> } </mo> </mrow> <mo> , </mo> <mrow> <mo> { </mo> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> , </mo> <msub> <mi> b </mi> <mn> 3 </mn> </msub> </mrow> <mo> } </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> &#968; </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> + </mo> <msub> <mi> &#968; </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mrow> <mi> O </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[UnderoverscriptBox[&quot;\[Sum]&quot;, RowBox[List[&quot;k&quot;, &quot;=&quot;, &quot;0&quot;]], &quot;\[Infinity]&quot;], RowBox[List[FractionBox[RowBox[List[TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, SubscriptBox[&quot;\[Psi]&quot;, &quot;3&quot;], &quot;)&quot;]], &quot;k&quot;], Pochhammer], &quot; &quot;, RowBox[List[SubsuperscriptBox[&quot;\[ScriptCapitalE]&quot;, &quot;k&quot;, RowBox[List[&quot;(&quot;, &quot;3&quot;, &quot;)&quot;]]], &quot;(&quot;, RowBox[List[RowBox[List[&quot;{&quot;, RowBox[List[SubscriptBox[&quot;a&quot;, &quot;1&quot;], &quot;,&quot;, SubscriptBox[&quot;a&quot;, &quot;2&quot;], &quot;,&quot;, SubscriptBox[&quot;a&quot;, &quot;3&quot;], &quot;,&quot;, SubscriptBox[&quot;a&quot;, &quot;4&quot;]]], &quot;}&quot;]], &quot;,&quot;, RowBox[List[&quot;{&quot;, RowBox[List[SubscriptBox[&quot;b&quot;, &quot;1&quot;], &quot;,&quot;, SubscriptBox[&quot;b&quot;, &quot;2&quot;], &quot;,&quot;, SubscriptBox[&quot;b&quot;, &quot;3&quot;]]], &quot;}&quot;]]]], &quot;)&quot;]]]], RowBox[List[RowBox[List[&quot;\[CapitalGamma]&quot;, &quot;(&quot;, RowBox[List[&quot;k&quot;, &quot;+&quot;, SubscriptBox[&quot;a&quot;, &quot;1&quot;], &quot;+&quot;, SubscriptBox[&quot;\[Psi]&quot;, &quot;3&quot;]]], &quot;)&quot;]], &quot; &quot;, RowBox[List[&quot;\[CapitalGamma]&quot;, &quot;(&quot;, RowBox[List[&quot;k&quot;, &quot;+&quot;, SubscriptBox[&quot;a&quot;, &quot;2&quot;], &quot;+&quot;, SubscriptBox[&quot;\[Psi]&quot;, &quot;3&quot;]]], &quot;)&quot;]]]]], RowBox[List[&quot;(&quot;, RowBox[List[&quot;1&quot;, &quot;+&quot;, RowBox[List[&quot;O&quot;, &quot;(&quot;, RowBox[List[&quot;z&quot;, &quot;-&quot;, &quot;1&quot;]], &quot;)&quot;]]]], &quot;)&quot;]]]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, True]], HypergeometricPFQ] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mo> - </mo> <msub> <mi> &#968; </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8719; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mn> 3 </mn> </munderover> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <msub> <mi> b </mi> <mi> k </mi> </msub> <mo> ) </mo> </mrow> </mrow> </mrow> <mrow> <munderover> <mo> &#8719; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 3 </mn> </mrow> <mn> 4 </mn> </munderover> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <msub> <mi> a </mi> <mi> k </mi> </msub> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <msub> <mi> &#968; </mi> <mn> 3 </mn> </msub> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mrow> <mi> O </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <semantics> <mo> &#8594; </mo> <annotation encoding='Mathematica'> &quot;\[Rule]&quot; </annotation> </semantics> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8743; </mo> <mrow> <msub> <mi> &#968; </mi> <mn> 3 </mn> </msub> <mo> &#10869; </mo> <mrow> <mrow> <munderover> <mo movablelimits='false'> &#8721; </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mn> 3 </mn> </munderover> <msub> <mi> b </mi> <mi> j </mi> </msub> </mrow> <mo> - </mo> <mrow> <munderover> <mo movablelimits='false'> &#8721; </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mn> 4 </mn> </munderover> <msub> <mi> a </mi> <mi> j </mi> </msub> </mrow> </mrow> </mrow> <mo> &#8743; </mo> <mrow> <mrow> <mi> Re </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <msub> <mi> &#968; </mi> <mn> 3 </mn> </msub> <mo> ) </mo> </mrow> </mrow> <mo> &gt; </mo> <mn> 0 </mn> </mrow> <mo> &#8743; </mo> <mrow> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> <mo> ) </mo> </mrow> <mo> &gt; </mo> <mn> 0 </mn> </mrow> <mo> &#8743; </mo> <mrow> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <msub> <mi> a </mi> <mn> 4 </mn> </msub> <mo> ) </mo> </mrow> <mo> &gt; </mo> <mn> 0 </mn> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <mrow> <mrow> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 4 </mn> </msub> <msub> <mi> F </mi> <mn> 3 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> , </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> <mo> , </mo> <msub> <mi> a </mi> <mn> 4 </mn> </msub> </mrow> <mo> ; </mo> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> , </mo> <msub> <mi> b </mi> <mn> 3 </mn> </msub> </mrow> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;4&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;3&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[SubscriptBox[&quot;a&quot;, &quot;1&quot;], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[SubscriptBox[&quot;a&quot;, &quot;2&quot;], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[SubscriptBox[&quot;a&quot;, &quot;3&quot;], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[SubscriptBox[&quot;a&quot;, &quot;4&quot;], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[RowBox[List[TagBox[SubscriptBox[&quot;b&quot;, &quot;1&quot;], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[SubscriptBox[&quot;b&quot;, &quot;2&quot;], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[SubscriptBox[&quot;b&quot;, &quot;3&quot;], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], &quot;;&quot;, TagBox[&quot;z&quot;, HypergeometricPFQ, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> <mo> &#8733; </mo> <mrow> <mrow> <mfrac> <mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <msub> <mi> &#968; </mi> <mn> 3 </mn> </msub> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8719; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mn> 3 </mn> </munderover> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <msub> <mi> b </mi> <mi> k </mi> </msub> <mo> ) </mo> </mrow> </mrow> </mrow> <mrow> <munderover> <mo> &#8719; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 3 </mn> </mrow> <mn> 4 </mn> </munderover> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <msub> <mi> a </mi> <mi> k </mi> </msub> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <semantics> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> &#8734; </mi> </munderover> <mrow> <mfrac> <mrow> <msub> <mrow> <mo> ( </mo> <msub> <mi> &#968; </mi> <mn> 3 </mn> </msub> <mo> ) </mo> </mrow> <mi> k </mi> </msub> <mo> &#8290; </mo> <mrow> <msubsup> <mi> &#8496; </mi> <mi> k </mi> <mrow> <mo> ( </mo> <mn> 3 </mn> <mo> ) </mo> </mrow> </msubsup> <mo> ( </mo> <mrow> <mrow> <mo> { </mo> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> , </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> <mo> , </mo> <msub> <mi> a </mi> <mn> 4 </mn> </msub> </mrow> <mo> } </mo> </mrow> <mo> , </mo> <mrow> <mo> { </mo> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> , </mo> <msub> <mi> b </mi> <mn> 3 </mn> </msub> </mrow> <mo> } </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> &#968; </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> + </mo> <msub> <mi> &#968; </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mrow> <mi> O </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[UnderoverscriptBox[&quot;\[Sum]&quot;, RowBox[List[&quot;k&quot;, &quot;=&quot;, &quot;0&quot;]], &quot;\[Infinity]&quot;], RowBox[List[FractionBox[RowBox[List[TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, SubscriptBox[&quot;\[Psi]&quot;, &quot;3&quot;], &quot;)&quot;]], &quot;k&quot;], Pochhammer], &quot; &quot;, RowBox[List[SubsuperscriptBox[&quot;\[ScriptCapitalE]&quot;, &quot;k&quot;, RowBox[List[&quot;(&quot;, &quot;3&quot;, &quot;)&quot;]]], &quot;(&quot;, RowBox[List[RowBox[List[&quot;{&quot;, RowBox[List[SubscriptBox[&quot;a&quot;, &quot;1&quot;], &quot;,&quot;, SubscriptBox[&quot;a&quot;, &quot;2&quot;], &quot;,&quot;, SubscriptBox[&quot;a&quot;, &quot;3&quot;], &quot;,&quot;, SubscriptBox[&quot;a&quot;, &quot;4&quot;]]], &quot;}&quot;]], &quot;,&quot;, RowBox[List[&quot;{&quot;, RowBox[List[SubscriptBox[&quot;b&quot;, &quot;1&quot;], &quot;,&quot;, SubscriptBox[&quot;b&quot;, &quot;2&quot;], &quot;,&quot;, SubscriptBox[&quot;b&quot;, &quot;3&quot;]]], &quot;}&quot;]]]], &quot;)&quot;]]]], RowBox[List[RowBox[List[&quot;\[CapitalGamma]&quot;, &quot;(&quot;, RowBox[List[&quot;k&quot;, &quot;+&quot;, SubscriptBox[&quot;a&quot;, &quot;1&quot;], &quot;+&quot;, SubscriptBox[&quot;\[Psi]&quot;, &quot;3&quot;]]], &quot;)&quot;]], &quot; &quot;, RowBox[List[&quot;\[CapitalGamma]&quot;, &quot;(&quot;, RowBox[List[&quot;k&quot;, &quot;+&quot;, SubscriptBox[&quot;a&quot;, &quot;2&quot;], &quot;+&quot;, SubscriptBox[&quot;\[Psi]&quot;, &quot;3&quot;]]], &quot;)&quot;]]]]], RowBox[List[&quot;(&quot;, RowBox[List[&quot;1&quot;, &quot;+&quot;, RowBox[List[&quot;O&quot;, &quot;(&quot;, RowBox[List[&quot;z&quot;, &quot;-&quot;, &quot;1&quot;]], &quot;)&quot;]]]], &quot;)&quot;]]]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, True]], HypergeometricPFQ] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mo> - </mo> <msub> <mi> &#968; </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8719; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mn> 3 </mn> </munderover> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <msub> <mi> b </mi> <mi> k </mi> </msub> <mo> ) </mo> </mrow> </mrow> </mrow> <mrow> <munderover> <mo> &#8719; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 3 </mn> </mrow> <mn> 4 </mn> </munderover> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <msub> <mi> a </mi> <mi> k </mi> </msub> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <msub> <mi> &#968; </mi> <mn> 3 </mn> </msub> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mrow> <mi> O </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <semantics> <mo> &#8594; </mo> <annotation encoding='Mathematica'> &quot;\[Rule]&quot; </annotation> </semantics> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8743; </mo> <mrow> <msub> <mi> &#968; </mi> <mn> 3 </mn> </msub> <mo> &#10869; </mo> <mrow> <mrow> <munderover> <mo movablelimits='false'> &#8721; </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mn> 3 </mn> </munderover> <msub> <mi> b </mi> <mi> j </mi> </msub> </mrow> <mo> - </mo> <mrow> <munderover> <mo movablelimits='false'> &#8721; </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mn> 4 </mn> </munderover> <msub> <mi> a </mi> <mi> j </mi> </msub> </mrow> </mrow> </mrow> <mo> &#8743; </mo> <mrow> <mrow> <mi> Re </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <msub> <mi> &#968; </mi> <mn> 3 </mn> </msub> <mo> ) </mo> </mrow> </mrow> <mo> &gt; </mo> <mn> 0 </mn> </mrow> <mo> &#8743; </mo> <mrow> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> <mo> ) </mo> </mrow> <mo> &gt; </mo> <mn> 0 </mn> </mrow> <mo> &#8743; </mo> <mrow> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <msub> <mi> a </mi> <mn> 4 </mn> </msub> <mo> ) </mo> </mrow> <mo> &gt; </mo> <mn> 0 </mn> </mrow> </mrow> </mrow> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a_", "1"], ",", SubscriptBox["a_", "2"], ",", SubscriptBox["a_", "3"], ",", SubscriptBox["a_", "4"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b_", "1"], ",", SubscriptBox["b_", "2"], ",", SubscriptBox["b_", "3"]]], "}"]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Gamma", "[", SubscriptBox["\[Psi]", "3"], "]"]], " ", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "1"]], "3"], RowBox[List["Gamma", "[", SubscriptBox["b", "k"], "]"]]]]]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[SubscriptBox["\[Psi]", "3"], ",", "k"]], "]"]], " ", RowBox[List["HypergeometricPFQExpansionCoefficient", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["aa", "1"], ",", SubscriptBox["aa", "2"], ",", SubscriptBox["aa", "3"], ",", SubscriptBox["aa", "4"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["bb", "1"], ",", SubscriptBox["bb", "2"], ",", SubscriptBox["bb", "3"]]], "}"]], ",", "k"]], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["O", "[", RowBox[List["z", "-", "1"]], "]"]]]], ")"]]]], RowBox[List[RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["\[Psi]", "3"], "+", SubscriptBox["aa", "1"], "+", "k"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["\[Psi]", "3"], "+", SubscriptBox["aa", "2"], "+", "k"]], "]"]]]]]]]]], RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "3"]], "4"], RowBox[List["Gamma", "[", SubscriptBox["a", "k"], "]"]]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Gamma", "[", RowBox[List["-", SubscriptBox["\[Psi]", "3"]]], "]"]], " ", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "1"]], "3"], RowBox[List["Gamma", "[", SubscriptBox["b", "k"], "]"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], SubscriptBox["\[Psi]", "3"]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["O", "[", RowBox[List["z", "-", "1"]], "]"]]]], ")"]]]], RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "1"]], "4"], RowBox[List["Gamma", "[", SubscriptBox["a", "k"], "]"]]]]]]], "/;", RowBox[List[RowBox[List["(", RowBox[List["z", "\[Rule]", "1"]], ")"]], "&&", RowBox[List[SubscriptBox["\[Psi]", "3"], "\[Equal]", RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "1"]], "3"], SubscriptBox["b", "j"]]], "-", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "1"]], "4"], SubscriptBox["a", "j"]]]]]]], "&&", RowBox[List[RowBox[List["Re", "[", SubscriptBox["\[Psi]", "3"], "]"]], ">", "0"]], "&&", RowBox[List[RowBox[List["Re", "[", SubscriptBox["aa", "3"], "]"]], ">", "0"]], "&&", RowBox[List[RowBox[List["Re", "[", SubscriptBox["aa", "4"], "]"]], ">", "0"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29





© 1998-2014 Wolfram Research, Inc.