Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
HypergeometricPFQ






Mathematica Notation

Traditional Notation









Hypergeometric Functions > HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] > Specific values > Specialized values > Case q+1Fqat z==1





http://functions.wolfram.com/07.31.03.0039.01









  


  










Input Form





HypergeometricPFQ[{-n, a/(q + 1), (a + 1)/(q + 1), \[Ellipsis], (a + q)/(q + 1), b/q, (b + 1)/q, \[Ellipsis], (b + q - 1)/q}, {(a + 1)/q, (a + 2)/q, \[Ellipsis], (a + q)/q, (b - 1)/(q + 1), b/(q + 1), \[Ellipsis], (b - 1 + q)/(q + 1)}, 1] == Sum[(Pochhammer[-n, k] Pochhammer[a, q k + k] Pochhammer[b, q k])/ (k! Pochhammer[a + 1, q k] Pochhammer[b - 1, q k + k]), {k, 0, n}] /; Element[n, Integers] && n > 0










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["-", "n"]], ",", FractionBox["a", RowBox[List["q", "+", "1"]]], ",", FractionBox[RowBox[List["a", "+", "1"]], RowBox[List["q", "+", "1"]]], ",", "\[Ellipsis]", ",", FractionBox[RowBox[List["a", "+", "q"]], RowBox[List["q", "+", "1"]]], ",", FractionBox["b", "q"], ",", FractionBox[RowBox[List["b", "+", "1"]], "q"], ",", "\[Ellipsis]", ",", FractionBox[RowBox[List["b", "+", "q", "-", "1"]], "q"]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox[RowBox[List["a", "+", "1"]], "q"], ",", FractionBox[RowBox[List["a", "+", "2"]], "q"], ",", "\[Ellipsis]", ",", FractionBox[RowBox[List["a", "+", "q"]], "q"], ",", FractionBox[RowBox[List["b", "-", "1"]], RowBox[List["q", "+", "1"]]], ",", FractionBox["b", RowBox[List["q", "+", "1"]]], ",", "\[Ellipsis]", ",", FractionBox[RowBox[List["b", "-", "1", "+", "q"]], RowBox[List["q", "+", "1"]]]]], "}"]], ",", "1"]], "]"]], "\[Equal]", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "n"], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["-", "n"]], ",", "k"]], "]"]], RowBox[List["Pochhammer", "[", RowBox[List["a", ",", RowBox[List[RowBox[List["q", " ", "k"]], "+", "k"]]]], "]"]], RowBox[List["Pochhammer", "[", RowBox[List["b", ",", RowBox[List["q", " ", "k"]]]], "]"]]]], ")"]], "/", RowBox[List["(", RowBox[List[RowBox[List["k", "!"]], RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["a", "+", "1"]], ",", RowBox[List["q", " ", "k"]]]], "]"]], RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["b", "-", "1"]], ",", RowBox[List[RowBox[List["q", " ", "k"]], "+", "k"]]]], "]"]]]], ")"]]]]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", ">", "0"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> q </mi> </mrow> <mo> + </mo> <mn> 2 </mn> </mrow> </msub> <msub> <mi> F </mi> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> q </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> n </mi> </mrow> <mo> , </mo> <mfrac> <mi> a </mi> <mrow> <mi> q </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> <mo> , </mo> <mfrac> <mrow> <mi> a </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mrow> <mi> q </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> <mo> , </mo> <mo> &#8230; </mo> <mo> , </mo> <mfrac> <mrow> <mi> a </mi> <mo> + </mo> <mi> q </mi> </mrow> <mrow> <mi> q </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> <mo> , </mo> <mfrac> <mi> b </mi> <mi> q </mi> </mfrac> <mo> , </mo> <mfrac> <mrow> <mi> b </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mi> q </mi> </mfrac> <mo> , </mo> <mo> &#8230; </mo> <mo> , </mo> <mrow> <mfrac> <mrow> <mi> b </mi> <mo> + </mo> <mi> q </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mi> q </mi> </mfrac> <mo> ; </mo> <mrow> <mfrac> <mrow> <mi> a </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mi> q </mi> </mfrac> <mo> , </mo> <mfrac> <mrow> <mi> a </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mi> q </mi> </mfrac> <mo> , </mo> <mo> &#8230; </mo> <mo> , </mo> <mfrac> <mrow> <mi> a </mi> <mo> + </mo> <mi> q </mi> </mrow> <mi> q </mi> </mfrac> <mo> , </mo> <mfrac> <mrow> <mi> b </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mrow> <mi> q </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> <mo> , </mo> <mfrac> <mi> b </mi> <mrow> <mi> q </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> <mo> , </mo> <mo> &#8230; </mo> <mo> , </mo> <mfrac> <mrow> <mi> b </mi> <mo> - </mo> <mn> 1 </mn> <mo> + </mo> <mi> q </mi> </mrow> <mrow> <mi> q </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> </mrow> <mo> ; </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[RowBox[List[RowBox[List[&quot;2&quot;, &quot;q&quot;]], &quot;+&quot;, &quot;2&quot;]], TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[RowBox[List[RowBox[List[&quot;2&quot;, &quot;q&quot;]], &quot;+&quot;, &quot;1&quot;]], TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[RowBox[List[&quot;-&quot;, &quot;n&quot;]], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[FractionBox[&quot;a&quot;, RowBox[List[&quot;q&quot;, &quot;+&quot;, &quot;1&quot;]]], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[FractionBox[RowBox[List[&quot;a&quot;, &quot;+&quot;, &quot;1&quot;]], RowBox[List[&quot;q&quot;, &quot;+&quot;, &quot;1&quot;]]], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[&quot;\[Ellipsis]&quot;, HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[FractionBox[RowBox[List[&quot;a&quot;, &quot;+&quot;, &quot;q&quot;]], RowBox[List[&quot;q&quot;, &quot;+&quot;, &quot;1&quot;]]], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[FractionBox[&quot;b&quot;, &quot;q&quot;], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[FractionBox[RowBox[List[&quot;b&quot;, &quot;+&quot;, &quot;1&quot;]], &quot;q&quot;], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[&quot;\[Ellipsis]&quot;, HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, RowBox[List[TagBox[FractionBox[RowBox[List[&quot;b&quot;, &quot;+&quot;, &quot;q&quot;, &quot;-&quot;, &quot;1&quot;]], &quot;q&quot;], HypergeometricPFQ, Rule[Editable, True]], &quot;;&quot;, TagBox[TagBox[RowBox[List[TagBox[FractionBox[RowBox[List[&quot;a&quot;, &quot;+&quot;, &quot;1&quot;]], &quot;q&quot;], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[FractionBox[RowBox[List[&quot;a&quot;, &quot;+&quot;, &quot;2&quot;]], &quot;q&quot;], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[&quot;\[Ellipsis]&quot;, HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[FractionBox[RowBox[List[&quot;a&quot;, &quot;+&quot;, &quot;q&quot;]], &quot;q&quot;], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[FractionBox[RowBox[List[&quot;b&quot;, &quot;-&quot;, &quot;1&quot;]], RowBox[List[&quot;q&quot;, &quot;+&quot;, &quot;1&quot;]]], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[FractionBox[&quot;b&quot;, RowBox[List[&quot;q&quot;, &quot;+&quot;, &quot;1&quot;]]], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[&quot;\[Ellipsis]&quot;, HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[FractionBox[RowBox[List[&quot;b&quot;, &quot;-&quot;, &quot;1&quot;, &quot;+&quot;, &quot;q&quot;]], RowBox[List[&quot;q&quot;, &quot;+&quot;, &quot;1&quot;]]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], &quot;;&quot;, TagBox[&quot;1&quot;, HypergeometricPFQ, Rule[Editable, True]]]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, True]], HypergeometricPFQ] </annotation> </semantics> <mo> &#10869; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> n </mi> </munderover> <mfrac> <mrow> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, RowBox[List[&quot;-&quot;, &quot;n&quot;]], &quot;)&quot;]], &quot;k&quot;], Pochhammer] </annotation> </semantics> <mo> &#8290; </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> <mrow> <mrow> <mi> q </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mi> k </mi> </mrow> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, &quot;a&quot;, &quot;)&quot;]], RowBox[List[RowBox[List[&quot;q&quot;, &quot; &quot;, &quot;k&quot;]], &quot;+&quot;, &quot;k&quot;]]], Pochhammer] </annotation> </semantics> <mo> &#8290; </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mi> b </mi> <mo> ) </mo> </mrow> <mrow> <mi> q </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, &quot;b&quot;, &quot;)&quot;]], RowBox[List[&quot;q&quot;, &quot; &quot;, &quot;k&quot;]]], Pochhammer] </annotation> </semantics> </mrow> <mrow> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> q </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, RowBox[List[&quot;a&quot;, &quot;+&quot;, &quot;1&quot;]], &quot;)&quot;]], RowBox[List[&quot;q&quot;, &quot; &quot;, &quot;k&quot;]]], Pochhammer] </annotation> </semantics> <mo> &#8290; </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mi> q </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mi> k </mi> </mrow> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, RowBox[List[&quot;b&quot;, &quot;-&quot;, &quot;1&quot;]], &quot;)&quot;]], RowBox[List[RowBox[List[&quot;q&quot;, &quot; &quot;, &quot;k&quot;]], &quot;+&quot;, &quot;k&quot;]]], Pochhammer] </annotation> </semantics> </mrow> </mfrac> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> n </mi> <mo> &#8712; </mo> <msup> <mi> &#8469; </mi> <mo> + </mo> </msup> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> HypergeometricPFQ </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <apply> <times /> <ci> a </ci> <apply> <power /> <apply> <plus /> <ci> q </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> q </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> n </ci> </uplimit> <apply> <times /> <apply> <ci> Pochhammer </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <ci> k </ci> </apply> <apply> <ci> Pochhammer </ci> <ci> a </ci> <apply> <plus /> <apply> <times /> <ci> q </ci> <ci> k </ci> </apply> <ci> k </ci> </apply> </apply> <apply> <ci> Pochhammer </ci> <ci> b </ci> <apply> <times /> <ci> q </ci> <ci> k </ci> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <factorial /> <ci> k </ci> </apply> <apply> <ci> Pochhammer </ci> <apply> <plus /> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <ci> q </ci> <ci> k </ci> </apply> </apply> <apply> <ci> Pochhammer </ci> <apply> <plus /> <ci> b </ci> <cn type='integer'> -1 </cn> </apply> <apply> <plus /> <apply> <times /> <ci> q </ci> <ci> k </ci> </apply> <ci> k </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <in /> <ci> n </ci> <apply> <ci> SuperPlus </ci> <ci> &#8469; </ci> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Date Added to functions.wolfram.com (modification date)





2001-10-29





© 1998- Wolfram Research, Inc.