html, body, form { margin: 0; padding: 0; width: 100%; } #calculate { position: relative; width: 177px; height: 110px; background: transparent url(/images/alphabox/embed_functions_inside.gif) no-repeat scroll 0 0; } #i { position: relative; left: 18px; top: 44px; width: 133px; border: 0 none; outline: 0; font-size: 11px; } #eq { width: 9px; height: 10px; background: transparent; position: absolute; top: 47px; right: 18px; cursor: pointer; }

 HypergeometricPFQ

 http://functions.wolfram.com/07.31.03.0071.01

 Input Form

 HypergeometricPFQ[{1, Subscript[a, 2], \[Ellipsis], Subscript[a, n + 1], Subscript[a, n + 2], \[Ellipsis], Subscript[a, q + 1]}, {Subscript[a, 2] + 2, \[Ellipsis], Subscript[a, n + 1] + 2, Subscript[a, n + 2] + 1, \[Ellipsis], Subscript[a, q + 1] + 1}, -1] == (-1)^(n - 1) 3^q 2^(-q - n) (Sum[Binomial[n + k - 1, k] 2^(k - q) (Zeta[q - k, 1/4] - Zeta[q - k, 3/4]), {k, 0, q - 2}] - Sum[(-1)^(n - k) Binomial[q + k - 1, k] 2^(k - n) (Zeta[n - k, 1/4] - Zeta[n - k, 3/4]), {k, 0, n - 2}] - Sum[Binomial[n + k - 1, k] 2^(q - k), {k, 0, q - 1}] + Pi Binomial[q + n - 2, n - 1]) /; Subscript[a, 2] == Subscript[a, 3] == \[Ellipsis] == Subscript[a, n + 1] == 1/2 && Subscript[a, n + 2] == Subscript[a, n + 3] == \[Ellipsis] == Subscript[a, q + 1] == 3/2

 Standard Form

 Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["1", ",", SubscriptBox["a", "2"], ",", "\[Ellipsis]", ",", SubscriptBox["a", RowBox[List["n", "+", "1"]]], ",", SubscriptBox["a", RowBox[List["n", "+", "2"]]], ",", "\[Ellipsis]", ",", SubscriptBox["a", RowBox[List["q", "+", "1"]]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List[SubscriptBox["a", "2"], "+", "2"]], ",", "\[Ellipsis]", ",", RowBox[List[SubscriptBox["a", RowBox[List["n", "+", "1"]]], "+", "2"]], ",", RowBox[List[SubscriptBox["a", RowBox[List["n", "+", "2"]]], "+", "1"]], ",", "\[Ellipsis]", ",", RowBox[List[SubscriptBox["a", RowBox[List["q", "+", "1"]]], "+", "1"]]]], "}"]], ",", RowBox[List["-", "1"]]]], "]"]], "\[Equal]", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["n", "-", "1"]]], SuperscriptBox["3", "q"], SuperscriptBox["2", RowBox[List[RowBox[List["-", "q"]], "-", "n"]]], RowBox[List["(", RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["q", "-", "2"]]], RowBox[List[RowBox[List["Binomial", "[", RowBox[List[RowBox[List["n", "+", "k", "-", "1"]], ",", "k"]], "]"]], SuperscriptBox["2", RowBox[List["k", "-", "q"]]], RowBox[List["(", RowBox[List[RowBox[List["Zeta", "[", RowBox[List[RowBox[List["q", "-", "k"]], ",", FractionBox["1", "4"]]], "]"]], "-", RowBox[List["Zeta", "[", RowBox[List[RowBox[List["q", "-", "k"]], ",", FractionBox["3", "4"]]], "]"]]]], ")"]]]]]], "-", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["n", "-", "2"]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["n", "-", "k"]]], RowBox[List["Binomial", "[", RowBox[List[RowBox[List["q", "+", "k", "-", "1"]], ",", "k"]], "]"]], SuperscriptBox["2", RowBox[List["k", "-", "n"]]], RowBox[List["(", RowBox[List[RowBox[List["Zeta", "[", RowBox[List[RowBox[List["n", "-", "k"]], ",", FractionBox["1", "4"]]], "]"]], "-", RowBox[List["Zeta", "[", RowBox[List[RowBox[List["n", "-", "k"]], ",", FractionBox["3", "4"]]], "]"]]]], ")"]]]]]], "-", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["q", "-", "1"]]], RowBox[List[RowBox[List["Binomial", "[", RowBox[List[RowBox[List["n", "+", "k", "-", "1"]], ",", "k"]], "]"]], SuperscriptBox["2", RowBox[List["q", "-", "k"]]]]]]], "+", RowBox[List["\[Pi]", " ", RowBox[List["Binomial", "[", RowBox[List[RowBox[List["q", "+", "n", "-", "2"]], ",", RowBox[List["n", "-", "1"]]]], "]"]]]]]], ")"]]]]]], "/;", RowBox[List[RowBox[List[SubscriptBox["a", "2"], "\[Equal]", SubscriptBox["a", "3"], "\[Equal]", "\[Ellipsis]", "\[Equal]", SubscriptBox["a", RowBox[List["n", "+", "1"]]], "\[Equal]", FractionBox["1", "2"]]], "\[And]", RowBox[List[SubscriptBox["a", RowBox[List["n", "+", "2"]]], "\[Equal]", SubscriptBox["a", RowBox[List["n", "+", "3"]]], "\[Equal]", "\[Ellipsis]", "\[Equal]", SubscriptBox["a", RowBox[List["q", "+", "1"]]], "\[Equal]", FractionBox["3", "2"]]]]]]]]]

 MathML Form

 q + 1 F q ( 1 , a 2 , , a n + 1 , a n + 2 , , a q + 1 ; a 2 + 2 , , a n + 1 + 2 , a n + 2 + 1 , , a q + 1 + 1 ; - 1 ) TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox[RowBox[List["q", "+", "1"]], TraditionalForm]], SubscriptBox["F", FormBox["q", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List["1", ",", SubscriptBox["a", "2"], ",", "\[Ellipsis]", ",", SubscriptBox["a", RowBox[List["n", "+", "1"]]], ",", SubscriptBox["a", RowBox[List["n", "+", "2"]]], ",", "\[Ellipsis]", ",", RowBox[List[SubscriptBox["a", RowBox[List["q", "+", "1"]]], ";", TagBox[TagBox[RowBox[List[TagBox[RowBox[List[SubscriptBox["a", "2"], "+", "2"]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox["\[Ellipsis]", HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List[RowBox[List[SubscriptBox["a", RowBox[List["n", "+", "1"]]], "+", "2"]], ",", RowBox[List[SubscriptBox["a", RowBox[List["n", "+", "2"]]], "+", "1"]], ",", "\[Ellipsis]", ",", RowBox[List[SubscriptBox["a", RowBox[List["q", "+", "1"]]], "+", "1"]]]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[RowBox[List["-", "1"]], HypergeometricPFQ, Rule[Editable, True]]]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, True]], HypergeometricPFQ] ( - 1 ) n - 1 3 q 2 - n - q ( π ( n + q - 2 n - 1 ) TagBox[RowBox[List["(", GridBox[List[List[TagBox[RowBox[List["n", "+", "q", "-", "2"]], Identity, Rule[Editable, True]]], List[TagBox[RowBox[List["n", "-", "1"]], Identity, Rule[Editable, True]]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] - k = 0 q - 1 ( k + n - 1 k ) TagBox[RowBox[List["(", GridBox[List[List[TagBox[RowBox[List["k", "+", "n", "-", "1"]], Identity, Rule[Editable, True]]], List[TagBox["k", Identity, Rule[Editable, True]]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] 2 q - k - k = 0 n - 2 ( - 1 ) n - k ( k + q - 1 k ) TagBox[RowBox[List["(", GridBox[List[List[TagBox[RowBox[List["k", "+", "q", "-", "1"]], Identity, Rule[Editable, True]]], List[TagBox["k", Identity, Rule[Editable, True]]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] 2 k - n ( ζ ( n - k , 1 4 ) TagBox[RowBox[List["\[Zeta]", "(", RowBox[List[TagBox[RowBox[List["n", "-", "k"]], Rule[Editable, True]], ",", TagBox[FractionBox["1", "4"], Rule[Editable, True]]]], ")"]], InterpretTemplate[Function[List[\$CellContext`e1, \$CellContext`e2], Zeta[\$CellContext`e1, \$CellContext`e2]]]] - ζ ( n - k , 3 4 ) TagBox[RowBox[List["\[Zeta]", "(", RowBox[List[TagBox[RowBox[List["n", "-", "k"]], Rule[Editable, True]], ",", TagBox[FractionBox["3", "4"], Rule[Editable, True]]]], ")"]], InterpretTemplate[Function[List[\$CellContext`e1, \$CellContext`e2], Zeta[\$CellContext`e1, \$CellContext`e2]]]] ) + k = 0 q - 2 ( k + n - 1 k ) TagBox[RowBox[List["(", GridBox[List[List[TagBox[RowBox[List["k", "+", "n", "-", "1"]], Identity, Rule[Editable, True]]], List[TagBox["k", Identity, Rule[Editable, True]]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] 2 k - q ( ζ ( q - k , 1 4 ) TagBox[RowBox[List["\[Zeta]", "(", RowBox[List[TagBox[RowBox[List["q", "-", "k"]], Rule[Editable, True]], ",", TagBox[FractionBox["1", "4"], Rule[Editable, True]]]], ")"]], InterpretTemplate[Function[List[\$CellContext`e1, \$CellContext`e2], Zeta[\$CellContext`e1, \$CellContext`e2]]]] - ζ ( q - k , 3 4 ) TagBox[RowBox[List["\[Zeta]", "(", RowBox[List[TagBox[RowBox[List["q", "-", "k"]], Rule[Editable, True]], ",", TagBox[FractionBox["3", "4"], Rule[Editable, True]]]], ")"]], InterpretTemplate[Function[List[\$CellContext`e1, \$CellContext`e2], Zeta[\$CellContext`e1, \$CellContext`e2]]]] ) ) /; a 2 a 3 a q + 1 1 2 q > 1 FormBox RowBox RowBox TagBox RowBox RowBox SubscriptBox FormBox RowBox q + 1 TraditionalForm SubscriptBox F FormBox q TraditionalForm RowBox ( RowBox 1 , SubscriptBox a 2 , , SubscriptBox a RowBox n + 1 , SubscriptBox a RowBox n + 2 , , RowBox SubscriptBox a RowBox q + 1 ; TagBox TagBox RowBox TagBox RowBox SubscriptBox a 2 + 2 HypergeometricPFQ Rule Editable , TagBox HypergeometricPFQ Rule Editable , TagBox ErrorBox RowBox RowBox SubscriptBox a RowBox n + 1 + 2 , RowBox SubscriptBox a RowBox n + 2 + 1 , , RowBox SubscriptBox a RowBox q + 1 + 1 HypergeometricPFQ Rule Editable Function Null HoldComplete SlotSequence 1 HoldAllComplete HypergeometricPFQ Rule Editable ; TagBox RowBox - 1 HypergeometricPFQ Rule Editable ) Function Null HoldComplete HypergeometricPFQ Slot 1 Slot 2 Slot 3 HoldAllComplete RowBox SuperscriptBox RowBox ( RowBox - 1 ) RowBox n - 1 SuperscriptBox 3 q SuperscriptBox 2 RowBox RowBox - n - q RowBox ( RowBox RowBox π TagBox RowBox ( GridBox TagBox RowBox n + q - 2 Rule Editable TagBox RowBox n - 1 Rule Editable ) InterpretTemplate Function Binomial Slot 1 Slot 2 Rule Editable - RowBox UnderoverscriptBox RowBox k = 0 RowBox q - 1 RowBox TagBox RowBox ( GridBox TagBox RowBox k + n - 1 Rule Editable TagBox k Rule Editable ) InterpretTemplate Function Binomial Slot 1 Slot 2 Rule Editable SuperscriptBox 2 RowBox q - k - RowBox UnderoverscriptBox RowBox k = 0 RowBox n - 2 RowBox SuperscriptBox RowBox ( RowBox - 1 ) RowBox n - k TagBox RowBox ( GridBox TagBox RowBox k + q - 1 Rule Editable TagBox k Rule Editable ) InterpretTemplate Function Binomial Slot 1 Slot 2 Rule Editable SuperscriptBox 2 RowBox k - n RowBox ( RowBox TagBox RowBox ζ ( RowBox TagBox RowBox n - k Rule Editable , TagBox FractionBox 1 4 Rule Editable ) InterpretTemplate \$CellContext`e1 \$CellContext`e2 Zeta \$CellContext`e1 \$CellContext`e2 - TagBox RowBox ζ ( RowBox TagBox RowBox n - k Rule Editable , TagBox FractionBox 3 4 Rule Editable ) InterpretTemplate \$CellContext`e1 \$CellContext`e2 Zeta \$CellContext`e1 \$CellContext`e2 ) + RowBox UnderoverscriptBox RowBox k = 0 RowBox q - 2 RowBox TagBox RowBox ( GridBox TagBox RowBox k + n - 1 Rule Editable TagBox k Rule Editable ) InterpretTemplate Function Binomial Slot 1 Slot 2 Rule Editable SuperscriptBox 2 RowBox k - q RowBox ( RowBox TagBox RowBox ζ ( RowBox TagBox RowBox q - k Rule Editable , TagBox FractionBox 1 4 Rule Editable ) InterpretTemplate \$CellContext`e1 \$CellContext`e2 Zeta \$CellContext`e1 \$CellContext`e2 - TagBox RowBox ζ ( RowBox TagBox RowBox q - k Rule Editable , TagBox FractionBox 3 4 Rule Editable ) InterpretTemplate \$CellContext`e1 \$CellContext`e2 Zeta \$CellContext`e1 \$CellContext`e2 ) ) /; RowBox RowBox SubscriptBox a 2 SubscriptBox a 3 SubscriptBox a RowBox q + 1 FractionBox 1 2 RowBox q > 1 TraditionalForm [/itex]

 Date Added to functions.wolfram.com (modification date)

 2001-10-29