Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
HypergeometricPFQ






Mathematica Notation

Traditional Notation









Hypergeometric Functions > HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] > Specific values > Specialized values > Case 0F3





http://functions.wolfram.com/07.31.03.0159.01









  


  










Input Form





HypergeometricPFQ[{}, {1/2, b, 2 - b}, z] == (-((2 Pi (b - 1))/Sin[2 Pi b])) (KelvinBer[2 - 2 b, 2 Sqrt[2] z^(1/4)] (Cos[3 b Pi] KelvinBer[-2 + 2 b, 2 Sqrt[2] z^(1/4)] + Sin[3 b Pi] KelvinBei[-2 + 2 b, 2 Sqrt[2] z^(1/4)]) + KelvinBei[2 - 2 b, 2 Sqrt[2] z^(1/4)] (Cos[3 b Pi] KelvinBei[-2 + 2 b, 2 Sqrt[2] z^(1/4)] - Sin[3 b Pi] KelvinBer[-2 + 2 b, 2 Sqrt[2] z^(1/4)]))










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["1", "2"], ",", "b", ",", RowBox[List["2", "-", "b"]]]], "}"]], ",", "z"]], "]"]], "\[Equal]", RowBox[List[RowBox[List["-", FractionBox[RowBox[List["2", "\[Pi]", RowBox[List["(", RowBox[List["b", "-", "1"]], ")"]]]], RowBox[List["Sin", "[", RowBox[List["2", "\[Pi]", " ", "b"]], "]"]]]]], RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["KelvinBer", "[", RowBox[List[RowBox[List["2", "-", RowBox[List["2", " ", "b"]]]], ",", RowBox[List["2", " ", SqrtBox["2"], " ", SuperscriptBox["z", RowBox[List["1", "/", "4"]]]]]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Cos", "[", RowBox[List["3", " ", "b", " ", "\[Pi]"]], "]"]], " ", RowBox[List["KelvinBer", "[", RowBox[List[RowBox[List[RowBox[List["-", "2"]], "+", RowBox[List["2", " ", "b"]]]], ",", RowBox[List["2", " ", SqrtBox["2"], " ", SuperscriptBox["z", RowBox[List["1", "/", "4"]]]]]]], "]"]]]], "+", RowBox[List[RowBox[List["Sin", "[", RowBox[List["3", " ", "b", " ", "\[Pi]"]], "]"]], RowBox[List["KelvinBei", "[", RowBox[List[RowBox[List[RowBox[List["-", "2"]], "+", RowBox[List["2", " ", "b"]]]], ",", RowBox[List["2", " ", SqrtBox["2"], " ", SuperscriptBox["z", RowBox[List["1", "/", "4"]]]]]]], "]"]]]]]], " ", ")"]]]], "+", RowBox[List[RowBox[List["KelvinBei", "[", RowBox[List[RowBox[List["2", "-", RowBox[List["2", " ", "b"]]]], ",", RowBox[List["2", " ", SqrtBox["2"], " ", SuperscriptBox["z", RowBox[List["1", "/", "4"]]]]]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Cos", "[", RowBox[List["3", " ", "b", " ", "\[Pi]"]], "]"]], " ", RowBox[List["KelvinBei", "[", RowBox[List[RowBox[List[RowBox[List["-", "2"]], "+", RowBox[List["2", " ", "b"]]]], ",", RowBox[List["2", " ", SqrtBox["2"], " ", SuperscriptBox["z", RowBox[List["1", "/", "4"]]]]]]], "]"]]]], "-", RowBox[List[RowBox[List["Sin", "[", RowBox[List["3", " ", "b", " ", "\[Pi]"]], "]"]], RowBox[List["KelvinBer", "[", RowBox[List[RowBox[List[RowBox[List["-", "2"]], "+", RowBox[List["2", " ", "b"]]]], ",", RowBox[List["2", " ", SqrtBox["2"], " ", SuperscriptBox["z", RowBox[List["1", "/", "4"]]]]]]], "]"]]]]]], ")"]]]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 0 </mn> </msub> <msub> <mi> F </mi> <mn> 3 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mo> &#8202; </mo> <mo> ; </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> , </mo> <mi> b </mi> <mo> , </mo> <mrow> <mn> 2 </mn> <mo> - </mo> <mi> b </mi> </mrow> </mrow> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, &quot;0&quot;], SubscriptBox[&quot;F&quot;, &quot;3&quot;]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[&quot;\[Null]&quot;, InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], &quot;;&quot;, TagBox[TagBox[RowBox[List[TagBox[FractionBox[&quot;1&quot;, &quot;2&quot;], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[&quot;b&quot;, HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;2&quot;, &quot;-&quot;, &quot;b&quot;]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], &quot;;&quot;, TagBox[&quot;z&quot;, HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] </annotation> </semantics> <mo> &#63449; </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> </mfrac> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <msub> <mi> bei </mi> <mrow> <mn> 2 </mn> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> </mrow> </mrow> </msub> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <mroot> <mi> z </mi> <mn> 4 </mn> </mroot> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msub> <mi> bei </mi> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> </mrow> <mo> - </mo> <mn> 2 </mn> </mrow> </msub> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <mroot> <mi> z </mi> <mn> 4 </mn> </mroot> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msub> <mi> ber </mi> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> </mrow> <mo> - </mo> <mn> 2 </mn> </mrow> </msub> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <mroot> <mi> z </mi> <mn> 4 </mn> </mroot> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msub> <mi> ber </mi> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> </mrow> <mo> - </mo> <mn> 2 </mn> </mrow> </msub> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <mroot> <mi> z </mi> <mn> 4 </mn> </mroot> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <msub> <mi> bei </mi> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> </mrow> <mo> - </mo> <mn> 2 </mn> </mrow> </msub> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <mroot> <mi> z </mi> <mn> 4 </mn> </mroot> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msub> <mi> ber </mi> <mrow> <mn> 2 </mn> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> </mrow> </mrow> </msub> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <mroot> <mi> z </mi> <mn> 4 </mn> </mroot> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> HypergeometricPFQ </ci> <list /> <list> <cn type='rational'> 1 <sep /> 2 </cn> <ci> b </ci> <apply> <plus /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> </list> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> <apply> <plus /> <ci> b </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <apply> <sin /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> <ci> b </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <ci> KelvinBei </ci> <apply> <plus /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 4 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <cos /> <apply> <times /> <cn type='integer'> 3 </cn> <ci> b </ci> <pi /> </apply> </apply> <apply> <ci> KelvinBei </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> </apply> <cn type='integer'> -2 </cn> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 4 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <sin /> <apply> <times /> <cn type='integer'> 3 </cn> <ci> b </ci> <pi /> </apply> </apply> <apply> <ci> KelvinBer </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> </apply> <cn type='integer'> -2 </cn> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 4 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <cos /> <apply> <times /> <cn type='integer'> 3 </cn> <ci> b </ci> <pi /> </apply> </apply> <apply> <ci> KelvinBer </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> </apply> <cn type='integer'> -2 </cn> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 4 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <ci> KelvinBei </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> </apply> <cn type='integer'> -2 </cn> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 4 </cn> </apply> </apply> </apply> <apply> <sin /> <apply> <times /> <cn type='integer'> 3 </cn> <ci> b </ci> <pi /> </apply> </apply> </apply> </apply> <apply> <ci> KelvinBer </ci> <apply> <plus /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 4 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["1", "2"], ",", "b_", ",", RowBox[List["2", "-", "b_"]]]], "}"]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List["-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["2", " ", "\[Pi]", " ", RowBox[List["(", RowBox[List["b", "-", "1"]], ")"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["KelvinBer", "[", RowBox[List[RowBox[List["2", "-", RowBox[List["2", " ", "b"]]]], ",", RowBox[List["2", " ", SqrtBox["2"], " ", SuperscriptBox["z", RowBox[List["1", "/", "4"]]]]]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Cos", "[", RowBox[List["3", " ", "b", " ", "\[Pi]"]], "]"]], " ", RowBox[List["KelvinBer", "[", RowBox[List[RowBox[List[RowBox[List["-", "2"]], "+", RowBox[List["2", " ", "b"]]]], ",", RowBox[List["2", " ", SqrtBox["2"], " ", SuperscriptBox["z", RowBox[List["1", "/", "4"]]]]]]], "]"]]]], "+", RowBox[List[RowBox[List["Sin", "[", RowBox[List["3", " ", "b", " ", "\[Pi]"]], "]"]], " ", RowBox[List["KelvinBei", "[", RowBox[List[RowBox[List[RowBox[List["-", "2"]], "+", RowBox[List["2", " ", "b"]]]], ",", RowBox[List["2", " ", SqrtBox["2"], " ", SuperscriptBox["z", RowBox[List["1", "/", "4"]]]]]]], "]"]]]]]], ")"]]]], "+", RowBox[List[RowBox[List["KelvinBei", "[", RowBox[List[RowBox[List["2", "-", RowBox[List["2", " ", "b"]]]], ",", RowBox[List["2", " ", SqrtBox["2"], " ", SuperscriptBox["z", RowBox[List["1", "/", "4"]]]]]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Cos", "[", RowBox[List["3", " ", "b", " ", "\[Pi]"]], "]"]], " ", RowBox[List["KelvinBei", "[", RowBox[List[RowBox[List[RowBox[List["-", "2"]], "+", RowBox[List["2", " ", "b"]]]], ",", RowBox[List["2", " ", SqrtBox["2"], " ", SuperscriptBox["z", RowBox[List["1", "/", "4"]]]]]]], "]"]]]], "-", RowBox[List[RowBox[List["Sin", "[", RowBox[List["3", " ", "b", " ", "\[Pi]"]], "]"]], " ", RowBox[List["KelvinBer", "[", RowBox[List[RowBox[List[RowBox[List["-", "2"]], "+", RowBox[List["2", " ", "b"]]]], ",", RowBox[List["2", " ", SqrtBox["2"], " ", SuperscriptBox["z", RowBox[List["1", "/", "4"]]]]]]], "]"]]]]]], ")"]]]]]], ")"]]]], RowBox[List["Sin", "[", RowBox[List["2", " ", "\[Pi]", " ", "b"]], "]"]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02





© 1998- Wolfram Research, Inc.