Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
HypergeometricPFQ






Mathematica Notation

Traditional Notation









Hypergeometric Functions > HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] > Specific values > Specialized values > Case 0F3





http://functions.wolfram.com/07.31.03.0169.01









  


  










Input Form





HypergeometricPFQ[{}, {4/3, 3/2, 5/3}, -z] == (Pi/((3^(13/6) z^(2/3)) 2^(1/3))) (3 AiryAi[(-2^(1/3)) 3^(2/3) z^(1/6)] AiryAi[2^(1/3) 3^(2/3) z^(1/6)] - AiryBi[2^(1/3) 3^(2/3) z^(1/6)] AiryBi[(-2^(1/3)) 3^(2/3) z^(1/6)])










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["4", "3"], ",", FractionBox["3", "2"], ",", FractionBox["5", "3"]]], "}"]], ",", RowBox[List["-", "z"]]]], "]"]], "\[Equal]", RowBox[List[FractionBox[RowBox[List["\[Pi]", " "]], RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["3", RowBox[List["13", "/", "6"]]], " ", SuperscriptBox["z", RowBox[List["2", "/", "3"]]]]], ")"]], " ", SuperscriptBox["2", FractionBox["1", "3"]]]]], RowBox[List["(", RowBox[List[RowBox[List["3", " ", RowBox[List["AiryAi", "[", RowBox[List[RowBox[List["-", SuperscriptBox["2", RowBox[List["1", "/", "3"]]]]], " ", SuperscriptBox["3", RowBox[List["2", "/", "3"]]], " ", SuperscriptBox["z", RowBox[List["1", "/", "6"]]]]], "]"]], " ", RowBox[List["AiryAi", "[", RowBox[List[SuperscriptBox["2", RowBox[List["1", "/", "3"]]], " ", SuperscriptBox["3", RowBox[List["2", "/", "3"]]], " ", SuperscriptBox["z", RowBox[List["1", "/", "6"]]]]], "]"]]]], "-", RowBox[List[RowBox[List["AiryBi", "[", RowBox[List[SuperscriptBox["2", RowBox[List["1", "/", "3"]]], " ", SuperscriptBox["3", RowBox[List["2", "/", "3"]]], " ", SuperscriptBox["z", RowBox[List["1", "/", "6"]]]]], "]"]], " ", RowBox[List["AiryBi", "[", RowBox[List[RowBox[List["-", SuperscriptBox["2", RowBox[List["1", "/", "3"]]]]], " ", SuperscriptBox["3", RowBox[List["2", "/", "3"]]], " ", SuperscriptBox["z", RowBox[List["1", "/", "6"]]]]], "]"]]]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 0 </mn> </msub> <msub> <mi> F </mi> <mn> 3 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mo> &#8202; </mo> <mo> ; </mo> <mrow> <mfrac> <mn> 4 </mn> <mn> 3 </mn> </mfrac> <mo> , </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> , </mo> <mfrac> <mn> 5 </mn> <mn> 3 </mn> </mfrac> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, &quot;0&quot;], SubscriptBox[&quot;F&quot;, &quot;3&quot;]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[&quot;\[Null]&quot;, InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], &quot;;&quot;, TagBox[TagBox[RowBox[List[TagBox[FractionBox[&quot;4&quot;, &quot;3&quot;], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[FractionBox[&quot;3&quot;, &quot;2&quot;], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[FractionBox[&quot;5&quot;, &quot;3&quot;], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], &quot;;&quot;, TagBox[RowBox[List[&quot;-&quot;, &quot;z&quot;]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] </annotation> </semantics> <mo> &#63449; </mo> <mrow> <mfrac> <mrow> <mi> &#960; </mi> <mtext> </mtext> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <msup> <mn> 3 </mn> <mrow> <mn> 13 </mn> <mo> / </mo> <mn> 6 </mn> </mrow> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mroot> <mn> 2 </mn> <mn> 3 </mn> </mroot> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mrow> <mi> Ai </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mroot> <mn> 2 </mn> <mn> 3 </mn> </mroot> </mrow> <mo> &#8290; </mo> <msup> <mn> 3 </mn> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> <mo> &#8290; </mo> <mroot> <mi> z </mi> <mn> 6 </mn> </mroot> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> Ai </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mroot> <mn> 2 </mn> <mn> 3 </mn> </mroot> <mo> &#8290; </mo> <msup> <mn> 3 </mn> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> <mo> &#8290; </mo> <mroot> <mi> z </mi> <mn> 6 </mn> </mroot> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mrow> <mi> Bi </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mroot> <mn> 2 </mn> <mn> 3 </mn> </mroot> <mo> &#8290; </mo> <msup> <mn> 3 </mn> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> <mo> &#8290; </mo> <mroot> <mi> z </mi> <mn> 6 </mn> </mroot> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> Bi </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mroot> <mn> 2 </mn> <mn> 3 </mn> </mroot> </mrow> <mo> &#8290; </mo> <msup> <mn> 3 </mn> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> <mo> &#8290; </mo> <mroot> <mi> z </mi> <mn> 6 </mn> </mroot> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> HypergeometricPFQ </ci> <list /> <list> <cn type='rational'> 4 <sep /> 3 </cn> <cn type='rational'> 3 <sep /> 2 </cn> <cn type='rational'> 5 <sep /> 3 </cn> </list> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <times /> <apply> <times /> <pi /> <apply> <power /> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 13 <sep /> 6 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 2 <sep /> 3 </cn> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 3 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <ci> AiryAi </ci> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 3 </cn> </apply> </apply> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 2 <sep /> 3 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 6 </cn> </apply> </apply> </apply> <apply> <ci> AiryAi </ci> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 3 </cn> </apply> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 2 <sep /> 3 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 6 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <ci> AiryBi </ci> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 3 </cn> </apply> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 2 <sep /> 3 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 6 </cn> </apply> </apply> </apply> <apply> <ci> AiryBi </ci> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 3 </cn> </apply> </apply> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 2 <sep /> 3 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 6 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["4", "3"], ",", FractionBox["3", "2"], ",", FractionBox["5", "3"]]], "}"]], ",", RowBox[List["-", "z_"]]]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List[RowBox[List["3", " ", RowBox[List["AiryAi", "[", RowBox[List[RowBox[List["-", SuperscriptBox["2", RowBox[List["1", "/", "3"]]]]], " ", SuperscriptBox["3", RowBox[List["2", "/", "3"]]], " ", SuperscriptBox["z", RowBox[List["1", "/", "6"]]]]], "]"]], " ", RowBox[List["AiryAi", "[", RowBox[List[SuperscriptBox["2", RowBox[List["1", "/", "3"]]], " ", SuperscriptBox["3", RowBox[List["2", "/", "3"]]], " ", SuperscriptBox["z", RowBox[List["1", "/", "6"]]]]], "]"]]]], "-", RowBox[List[RowBox[List["AiryBi", "[", RowBox[List[SuperscriptBox["2", RowBox[List["1", "/", "3"]]], " ", SuperscriptBox["3", RowBox[List["2", "/", "3"]]], " ", SuperscriptBox["z", RowBox[List["1", "/", "6"]]]]], "]"]], " ", RowBox[List["AiryBi", "[", RowBox[List[RowBox[List["-", SuperscriptBox["2", RowBox[List["1", "/", "3"]]]]], " ", SuperscriptBox["3", RowBox[List["2", "/", "3"]]], " ", SuperscriptBox["z", RowBox[List["1", "/", "6"]]]]], "]"]]]]]], ")"]]]], RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["3", RowBox[List["13", "/", "6"]]], " ", SuperscriptBox["z", RowBox[List["2", "/", "3"]]]]], ")"]], " ", SuperscriptBox["2", RowBox[List["1", "/", "3"]]]]]]]]]]










Contributed by





Brychkov Yu.A. (2006)










Date Added to functions.wolfram.com (modification date)





2007-05-02





© 1998-2014 Wolfram Research, Inc.