Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
HypergeometricPFQ






Mathematica Notation

Traditional Notation









Hypergeometric Functions > HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] > General characteristics > Branch points > With respect to z





http://functions.wolfram.com/07.31.04.0017.01









  


  










Input Form





RamificationIndex[HypergeometricPFQ[{Subscript[a, 1], \[Ellipsis], Subscript[a, q + 1]}, {Subscript[b, 1], \[Ellipsis], Subscript[b, q]}, z], z, ComplexInfinity] == LCM[Subscript[s, 1], \[Ellipsis], Subscript[s, q + 1]] /; Subscript[a, l] == Subscript[r, l]/Subscript[s, l] && Element[{Subscript[r, l], Subscript[s, l]}, Integers] && Subscript[s, l] > 1 && GCD[Subscript[r, l], Subscript[s, l]] == 1 && 1 <= l <= q + 1 && NonTerminatingHypergeometricSeriesQ[ {Subscript[a, 1], \[Ellipsis], Subscript[a, q + 1]}]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["RamificationIndex", "[", RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["a", RowBox[List["q", "+", "1"]]]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["b", "q"]]], "}"]], ",", "z"]], "]"]], ",", "z", ",", "ComplexInfinity"]], "]"]], "\[Equal]", RowBox[List["LCM", "[", RowBox[List[SubscriptBox["s", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["s", RowBox[List["q", "+", "1"]]]]], "]"]]]], "/;", RowBox[List[RowBox[List[SubscriptBox["a", "l"], "\[Equal]", FractionBox[SubscriptBox["r", "l"], SubscriptBox["s", "l"]]]], "\[And]", RowBox[List["Element", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["r", "l"], ",", SubscriptBox["s", "l"]]], "}"]], ",", "Integers"]], "]"]], "\[And]", RowBox[List[SubscriptBox["s", "l"], ">", "1"]], "\[And]", RowBox[List[RowBox[List["GCD", "[", RowBox[List[SubscriptBox["r", "l"], ",", SubscriptBox["s", "l"]]], "]"]], "\[Equal]", "1"]], "\[And]", RowBox[List["1", "\[LessEqual]", "l", "\[LessEqual]", RowBox[List["q", "+", "1"]]]], "\[And]", RowBox[List["NonTerminatingHypergeometricSeriesQ", "[", RowBox[List["{", RowBox[List[SubscriptBox["a", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["a", RowBox[List["q", "+", "1"]]]]], "}"]], "]"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msub> <mi> &#8475; </mi> <mi> z </mi> </msub> <mo> ( </mo> <mrow> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mrow> <mi> q </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msub> <msub> <mi> F </mi> <mi> q </mi> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <semantics> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> , </mo> <mo> &#8230; </mo> <mo> , </mo> <msub> <mi> a </mi> <mrow> <mi> q </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msub> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[TagBox[SubscriptBox[&quot;a&quot;, &quot;1&quot;], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[&quot;\[Ellipsis]&quot;, HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[SubscriptBox[&quot;a&quot;, RowBox[List[&quot;q&quot;, &quot;+&quot;, &quot;1&quot;]]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]] </annotation> </semantics> <mo> ; </mo> <semantics> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> , </mo> <mo> &#8230; </mo> <mo> , </mo> <msub> <mi> b </mi> <mi> q </mi> </msub> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[TagBox[SubscriptBox[&quot;b&quot;, &quot;1&quot;], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[&quot;\[Ellipsis]&quot;, HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[SubscriptBox[&quot;b&quot;, &quot;q&quot;], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]] </annotation> </semantics> <mo> ; </mo> <semantics> <mi> z </mi> <annotation encoding='Mathematica'> TagBox[&quot;z&quot;, HypergeometricPFQ, Rule[Editable, True]] </annotation> </semantics> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mover> <mi> &#8734; </mi> <mo> ~ </mo> </mover> </mrow> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <mi> lcm </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msub> <mi> s </mi> <mn> 1 </mn> </msub> <mo> , </mo> <mo> &#8230; </mo> <mo> , </mo> <msub> <mi> s </mi> <mrow> <mi> q </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <msub> <mi> a </mi> <mi> l </mi> </msub> <mo> &#10869; </mo> <mfrac> <msub> <mi> r </mi> <mi> l </mi> </msub> <msub> <mi> s </mi> <mi> l </mi> </msub> </mfrac> </mrow> <mo> &#8743; </mo> <mrow> <mrow> <mo> { </mo> <mrow> <msub> <mi> r </mi> <mi> l </mi> </msub> <mo> , </mo> <msub> <mi> s </mi> <mi> l </mi> </msub> </mrow> <mo> } </mo> </mrow> <mo> &#8712; </mo> <semantics> <mi> &#8484; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubleStruckCapitalZ]&quot;, Function[Integers]] </annotation> </semantics> </mrow> <mo> &#8743; </mo> <mrow> <msub> <mi> s </mi> <mi> l </mi> </msub> <mo> &gt; </mo> <mn> 1 </mn> </mrow> <mo> &#8743; </mo> <mrow> <mrow> <mi> gcd </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msub> <mi> r </mi> <mi> l </mi> </msub> <mo> , </mo> <msub> <mi> s </mi> <mi> l </mi> </msub> </mrow> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mn> 1 </mn> </mrow> <mo> &#8743; </mo> <mrow> <mn> 1 </mn> <mo> &#8804; </mo> <mi> l </mi> <mo> &#8804; </mo> <mrow> <mi> q </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> &#8743; </mo> <mrow> <mi> &#119977;&#119983; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mo> { </mo> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> , </mo> <mo> &#8230; </mo> <mo> , </mo> <msub> <mi> a </mi> <mrow> <mi> q </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msub> </mrow> <mo> } </mo> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> FormBox </ci> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <apply> <ci> SubscriptBox </ci> <ms> &#8475; </ms> <ms> z </ms> </apply> <ms> [ </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <apply> <ci> SubscriptBox </ci> <apply> <ci> ErrorBox </ci> <ms> &#62387; </ms> </apply> <apply> <ci> FormBox </ci> <apply> <ci> RowBox </ci> <list> <ms> q </ms> <ms> + </ms> <ms> 1 </ms> </list> </apply> <ci> TraditionalForm </ci> </apply> </apply> <apply> <ci> SubscriptBox </ci> <ms> F </ms> <apply> <ci> FormBox </ci> <ms> q </ms> <ci> TraditionalForm </ci> </apply> </apply> </list> </apply> <ms> &#8289; </ms> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> TagBox </ci> <apply> <ci> TagBox </ci> <apply> <ci> RowBox </ci> <list> <apply> <ci> TagBox </ci> <apply> <ci> SubscriptBox </ci> <ms> a </ms> <ms> 1 </ms> </apply> <ci> HypergeometricPFQ </ci> <apply> <ci> Rule </ci> <ci> Editable </ci> <true /> </apply> </apply> <ms> , </ms> <apply> <ci> TagBox </ci> <ms> &#8230; </ms> <ci> HypergeometricPFQ </ci> <apply> <ci> Rule </ci> <ci> Editable </ci> <true /> </apply> </apply> <ms> , </ms> <apply> <ci> TagBox </ci> <apply> <ci> SubscriptBox </ci> <ms> a </ms> <apply> <ci> RowBox </ci> <list> <ms> q </ms> <ms> + </ms> <ms> 1 </ms> </list> </apply> </apply> <ci> HypergeometricPFQ </ci> <apply> <ci> Rule </ci> <ci> Editable </ci> <true /> </apply> </apply> </list> </apply> <apply> <ci> InterpretTemplate </ci> <apply> <ci> Function </ci> <list> <apply> <ci> SlotSequence </ci> <cn type='integer'> 1 </cn> </apply> </list> </apply> </apply> </apply> <ci> HypergeometricPFQ </ci> <apply> <ci> Rule </ci> <ci> Editable </ci> <false /> </apply> </apply> <ms> ; </ms> <apply> <ci> TagBox </ci> <apply> <ci> TagBox </ci> <apply> <ci> RowBox </ci> <list> <apply> <ci> TagBox </ci> <apply> <ci> SubscriptBox </ci> <ms> b </ms> <ms> 1 </ms> </apply> <ci> HypergeometricPFQ </ci> <apply> <ci> Rule </ci> <ci> Editable </ci> <true /> </apply> </apply> <ms> , </ms> <apply> <ci> TagBox </ci> <ms> &#8230; </ms> <ci> HypergeometricPFQ </ci> <apply> <ci> Rule </ci> <ci> Editable </ci> <true /> </apply> </apply> <ms> , </ms> <apply> <ci> TagBox </ci> <apply> <ci> SubscriptBox </ci> <ms> b </ms> <ms> q </ms> </apply> <ci> HypergeometricPFQ </ci> <apply> <ci> Rule </ci> <ci> Editable </ci> <true /> </apply> </apply> </list> </apply> <apply> <ci> InterpretTemplate </ci> <apply> <ci> Function </ci> <list> <apply> <ci> SlotSequence </ci> <cn type='integer'> 1 </cn> </apply> </list> </apply> </apply> </apply> <ci> HypergeometricPFQ </ci> <apply> <ci> Rule </ci> <ci> Editable </ci> <false /> </apply> </apply> <ms> ; </ms> <apply> <ci> TagBox </ci> <ms> z </ms> <ci> HypergeometricPFQ </ci> <apply> <ci> Rule </ci> <ci> Editable </ci> <true /> </apply> </apply> </list> </apply> <ms> ) </ms> </list> </apply> </list> </apply> <ms> , </ms> <apply> <ci> OverscriptBox </ci> <ms> &#8734; </ms> <ms> ~ </ms> </apply> <ms> ] </ms> </list> </apply> <ms> &#10869; </ms> <apply> <ci> RowBox </ci> <list> <ms> lcm </ms> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> SubscriptBox </ci> <ms> s </ms> <ms> 1 </ms> </apply> <ms> , </ms> <ms> &#8230; </ms> <ms> , </ms> <apply> <ci> SubscriptBox </ci> <ms> s </ms> <apply> <ci> RowBox </ci> <list> <ms> q </ms> <ms> + </ms> <ms> 1 </ms> </list> </apply> </apply> </list> </apply> <ms> ) </ms> </list> </apply> </list> </apply> <ms> /; </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <apply> <ci> SubscriptBox </ci> <ms> a </ms> <ms> l </ms> </apply> <ms> &#10869; </ms> <apply> <ci> FractionBox </ci> <apply> <ci> SubscriptBox </ci> <ms> r </ms> <ms> l </ms> </apply> <apply> <ci> SubscriptBox </ci> <ms> s </ms> <ms> l </ms> </apply> </apply> </list> </apply> <ms> &#8743; </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> { </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> SubscriptBox </ci> <ms> r </ms> <ms> l </ms> </apply> <ms> , </ms> <apply> <ci> SubscriptBox </ci> <ms> s </ms> <ms> l </ms> </apply> </list> </apply> <ms> } </ms> </list> </apply> <ms> &#8712; </ms> <apply> <ci> TagBox </ci> <ms> &#8484; </ms> <apply> <ci> Function </ci> <integers /> </apply> </apply> </list> </apply> <ms> &#8743; </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> SubscriptBox </ci> <ms> s </ms> <ms> l </ms> </apply> <ms> &gt; </ms> <ms> 1 </ms> </list> </apply> <ms> &#8743; </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> gcd </ms> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> SubscriptBox </ci> <ms> r </ms> <ms> l </ms> </apply> <ms> , </ms> <apply> <ci> SubscriptBox </ci> <ms> s </ms> <ms> l </ms> </apply> </list> </apply> <ms> ) </ms> </list> </apply> <ms> &#10869; </ms> <ms> 1 </ms> </list> </apply> <ms> &#8743; </ms> <apply> <ci> RowBox </ci> <list> <ms> 1 </ms> <ms> &#8804; </ms> <ms> l </ms> <ms> &#8804; </ms> <apply> <ci> RowBox </ci> <list> <ms> q </ms> <ms> + </ms> <ms> 1 </ms> </list> </apply> </list> </apply> <ms> &#8743; </ms> <apply> <ci> RowBox </ci> <list> <ms> &#119977;&#119983; </ms> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> { </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> SubscriptBox </ci> <ms> a </ms> <ms> 1 </ms> </apply> <ms> , </ms> <ms> &#8230; </ms> <ms> , </ms> <apply> <ci> SubscriptBox </ci> <ms> a </ms> <apply> <ci> RowBox </ci> <list> <ms> q </ms> <ms> + </ms> <ms> 1 </ms> </list> </apply> </apply> </list> </apply> <ms> } </ms> </list> </apply> <ms> ) </ms> </list> </apply> </list> </apply> </list> </apply> <ci> TraditionalForm </ci> </apply> </annotation-xml> </semantics> </math>










Date Added to functions.wolfram.com (modification date)





2001-10-29





© 1998- Wolfram Research, Inc.