html, body, form { margin: 0; padding: 0; width: 100%; } #calculate { position: relative; width: 177px; height: 110px; background: transparent url(/images/alphabox/embed_functions_inside.gif) no-repeat scroll 0 0; } #i { position: relative; left: 18px; top: 44px; width: 133px; border: 0 none; outline: 0; font-size: 11px; } #eq { width: 9px; height: 10px; background: transparent; position: absolute; top: 47px; right: 18px; cursor: pointer; }

 HypergeometricPFQ

 http://functions.wolfram.com/07.31.06.0032.01

 Input Form

 HypergeometricPFQ[{Subscript[a, 1], \[Ellipsis], Subscript[a, p]}, {Subscript[b, 1], \[Ellipsis], Subscript[b, q]}, z] \[Proportional] Product[Gamma[Subscript[b, j]] (AsymptoticHypergeometricPFQRegularizedSeries[Power][ {Subscript[a, 1], \[Ellipsis], Subscript[a, p]}, {Subscript[b, 1], \[Ellipsis], Subscript[b, q]}, {z, Infinity, Infinity}] + AsymptoticHypergeometricPFQRegularizedSeries[ Exp][{Subscript[a, 1], \[Ellipsis], Subscript[a, p]}, {Subscript[b, 1], \[Ellipsis], Subscript[b, q]}, {z, Infinity, Infinity}]), {j, 1, q}] /; q - p >= 2 && (Abs[z] -> Infinity) && ForAll[{j, k}, Element[{j, k}, Integers] && j != k && 1 <= j <= p && 1 <= k <= p, !Element[Subscript[a, j] - Subscript[a, k], Integers]]

 Standard Form

 Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["a", "p"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["b", "q"]]], "}"]], ",", "z"]], "]"]], "\[Proportional]", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["j", "=", "1"]], "q"], RowBox[List[RowBox[List["Gamma", "[", SubscriptBox["b", "j"], "]"]], RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["AsymptoticHypergeometricPFQRegularizedSeries", "[", "Power", "]"]], "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["a", "p"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["b", "q"]]], "}"]], ",", RowBox[List["{", RowBox[List["z", ",", "\[Infinity]", ",", "\[Infinity]"]], "}"]]]], "]"]], "+", RowBox[List[RowBox[List["AsymptoticHypergeometricPFQRegularizedSeries", "[", "Exp", "]"]], "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["a", "p"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["b", "q"]]], "}"]], ",", RowBox[List["{", RowBox[List["z", ",", "\[Infinity]", ",", "\[Infinity]"]], "}"]]]], "]"]]]], ")"]]]]]]]], "/;", RowBox[List[RowBox[List[RowBox[List["q", "-", "p"]], "\[GreaterEqual]", "2"]], "\[And]", RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "\[Rule]", "\[Infinity]"]], ")"]], "\[And]", RowBox[List[SubscriptBox["\[ForAll]", RowBox[List[RowBox[List["{", RowBox[List["j", ",", "k"]], "}"]], ",", RowBox[List[RowBox[List[RowBox[List["{", RowBox[List["j", ",", "k"]], "}"]], "\[Element]", "Integers"]], "\[And]", RowBox[List["j", "\[NotEqual]", "k"]], "\[And]", RowBox[List["1", "\[LessEqual]", "j", "\[LessEqual]", "p"]], "\[And]", RowBox[List["1", "\[LessEqual]", "k", "\[LessEqual]", "p"]]]]]]], RowBox[List["(", RowBox[List["Not", "[", RowBox[List[RowBox[List[SubscriptBox["a", "j"], "-", SubscriptBox["a", "k"]]], "\[Element]", "Integers"]], "]"]], ")"]]]]]]]]]]

 MathML Form

 p F q ( a 1 , , a p ; b 1 , , b q ; z ) TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["p", TraditionalForm]], SubscriptBox["F", FormBox["q", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[SubscriptBox["a", "1"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox["\[Ellipsis]", HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["a", "p"], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, True]], ";", TagBox[TagBox[RowBox[List[TagBox[SubscriptBox["b", "1"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox["\[Ellipsis]", HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["b", "q"], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, True]], ";", TagBox["z", HypergeometricPFQ, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, True]], HypergeometricPFQ] j = 1 q Γ ( b j ) ( 𝒜 F ~ ( power ) ( a 1 , , a p ; b 1 , , b q ; { z , , } ) + 𝒜 F ~ ( exp ) ( a 1 , , a p ; b 1 , , b q ; { z , , } ) ) /; q - p 2 ( "\[LeftBracketingBar]" z "\[RightBracketingBar]" "\[Rule]" ) { j , k } , { j , k } TagBox["\[DoubleStruckCapitalZ]", Function[Integers]] j k 1 j p 1 k p ( a j - a k TagBox["\[DoubleStruckCapitalZ]", Function[Integers]] ) FormBox RowBox RowBox TagBox TagBox RowBox RowBox SubscriptBox FormBox p TraditionalForm SubscriptBox F FormBox q TraditionalForm RowBox ( RowBox TagBox TagBox RowBox TagBox SubscriptBox a 1 HypergeometricPFQ Rule Editable , TagBox HypergeometricPFQ Rule Editable , TagBox SubscriptBox a p HypergeometricPFQ Rule Editable InterpretTemplate Function SlotSequence 1 HypergeometricPFQ Rule Editable ; TagBox TagBox RowBox TagBox SubscriptBox b 1 HypergeometricPFQ Rule Editable , TagBox HypergeometricPFQ Rule Editable , TagBox SubscriptBox b q HypergeometricPFQ Rule Editable InterpretTemplate Function SlotSequence 1 HypergeometricPFQ Rule Editable ; TagBox z HypergeometricPFQ Rule Editable ) InterpretTemplate Function HypergeometricPFQ Slot 1 Slot 2 Slot 3 Rule Editable HypergeometricPFQ RowBox UnderoverscriptBox RowBox j = 1 q ErrorBox RowBox RowBox Γ ( SubscriptBox b j ) RowBox ( RowBox RowBox SubsuperscriptBox 𝒜 OverscriptBox F ~ RowBox ( power ) ( RowBox GridBox RowBox SubscriptBox a 1 , , RowBox SubscriptBox a p ; RowBox SubscriptBox b 1 , , RowBox SubscriptBox b q ; RowBox { RowBox z , , } ) + RowBox SubsuperscriptBox 𝒜 OverscriptBox F ~ RowBox ( exp ) ( RowBox GridBox RowBox SubscriptBox a 1 , , RowBox SubscriptBox a p ; RowBox SubscriptBox b 1 , , RowBox SubscriptBox b q ; RowBox { RowBox z , , } ) ) /; RowBox RowBox RowBox q - p 2 RowBox ( RowBox RowBox z ) RowBox SubscriptBox RowBox RowBox { RowBox j , k } , RowBox RowBox RowBox { RowBox j , k } TagBox Function RowBox j k RowBox 1 j p RowBox 1 k p RowBox ( RowBox RowBox SubscriptBox a j - SubscriptBox a k TagBox Function ) TraditionalForm [/itex]

 Date Added to functions.wolfram.com (modification date)

 2001-10-29

© 1998-2013 Wolfram Research, Inc.