Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
HypergeometricPFQ






Mathematica Notation

Traditional Notation









Hypergeometric Functions > HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] > Series representations > Asymptotic series expansions > Expansions for 0F2





http://functions.wolfram.com/07.31.06.0034.01









  


  










Input Form





HypergeometricPFQ[{}, {Subscript[b, 1], Subscript[b, 2]}, z] \[Proportional] ((Gamma[Subscript[b, 1]] Gamma[Subscript[b, 2]])/(2 Sqrt[3] Pi)) E^(3 z^(1/3)) z^((1/3) (1 - Subscript[b, 1] - Subscript[b, 2])) (1 + (-2 - 3 Subscript[b, 1]^2 + 3 Subscript[b, 2] - 3 Subscript[b, 2]^2 + 3 Subscript[b, 1] (1 + Subscript[b, 2]))/(9 z^(1/3)) + (1/(162 z^(2/3))) (4 + 9 Subscript[b, 1]^4 - 12 Subscript[b, 2] + 3 Subscript[b, 2]^2 - 12 Subscript[b, 2]^3 + 9 Subscript[b, 2]^4 - 6 Subscript[b, 1]^3 (2 + 3 Subscript[b, 2]) + 3 Subscript[b, 1]^2 (1 - 3 Subscript[b, 2] + 9 Subscript[b, 2]^2) - 3 Subscript[b, 1] (4 - 17 Subscript[b, 2] + 3 Subscript[b, 2]^2 + 6 Subscript[b, 2]^3)) + \[Ellipsis]) /; (Abs[z] -> Infinity)










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b", "1"], ",", SubscriptBox["b", "2"]]], "}"]], ",", "z"]], "]"]], "\[Proportional]", RowBox[List[FractionBox[RowBox[List[RowBox[List["Gamma", "[", SubscriptBox["b", "1"], "]"]], " ", RowBox[List["Gamma", "[", SubscriptBox["b", "2"], "]"]]]], RowBox[List["2", " ", SqrtBox["3"], " ", "\[Pi]"]]], SuperscriptBox["\[ExponentialE]", RowBox[List["3", " ", SuperscriptBox["z", RowBox[List["1", "/", "3"]]]]]], " ", SuperscriptBox["z", RowBox[List[FractionBox["1", "3"], " ", RowBox[List["(", RowBox[List["1", "-", SubscriptBox["b", "1"], "-", SubscriptBox["b", "2"]]], ")"]]]]], " ", RowBox[List["(", RowBox[List["1", "+", FractionBox[RowBox[List[RowBox[List["-", "2"]], "-", RowBox[List["3", " ", SubsuperscriptBox["b", "1", "2"]]], "+", RowBox[List["3", " ", SubscriptBox["b", "2"]]], "-", RowBox[List["3", " ", SubsuperscriptBox["b", "2", "2"]]], "+", RowBox[List["3", " ", SubscriptBox["b", "1"], " ", RowBox[List["(", RowBox[List["1", "+", SubscriptBox["b", "2"]]], ")"]]]]]], RowBox[List["9", " ", SuperscriptBox["z", RowBox[List["1", "/", "3"]]]]]], "+", RowBox[List[FractionBox["1", RowBox[List["162", " ", SuperscriptBox["z", RowBox[List["2", "/", "3"]]]]]], RowBox[List["(", RowBox[List["4", "+", RowBox[List["9", " ", SubsuperscriptBox["b", "1", "4"]]], "-", RowBox[List["12", " ", SubscriptBox["b", "2"]]], "+", RowBox[List["3", " ", SubsuperscriptBox["b", "2", "2"]]], "-", RowBox[List["12", " ", SubsuperscriptBox["b", "2", "3"]]], "+", RowBox[List["9", " ", SubsuperscriptBox["b", "2", "4"]]], "-", RowBox[List["6", " ", SubsuperscriptBox["b", "1", "3"], " ", RowBox[List["(", RowBox[List["2", "+", RowBox[List["3", " ", SubscriptBox["b", "2"]]]]], ")"]]]], "+", RowBox[List["3", " ", SubsuperscriptBox["b", "1", "2"], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["3", " ", SubscriptBox["b", "2"]]], "+", RowBox[List["9", " ", SubsuperscriptBox["b", "2", "2"]]]]], ")"]]]], "-", RowBox[List["3", " ", SubscriptBox["b", "1"], " ", RowBox[List["(", RowBox[List["4", "-", RowBox[List["17", " ", SubscriptBox["b", "2"]]], "+", RowBox[List["3", " ", SubsuperscriptBox["b", "2", "2"]]], "+", RowBox[List["6", " ", SubsuperscriptBox["b", "2", "3"]]]]], ")"]]]]]], ")"]]]], "+", "\[Ellipsis]"]], ")"]]]]]], "/;", RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "\[Rule]", "\[Infinity]"]], ")"]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 0 </mn> </msub> <msub> <mi> F </mi> <mn> 2 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mo> &#8202; </mo> <mo> ; </mo> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> </mrow> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;0&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;2&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[&quot;\[Null]&quot;, InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[RowBox[List[TagBox[SubscriptBox[&quot;b&quot;, &quot;1&quot;], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[SubscriptBox[&quot;b&quot;, &quot;2&quot;], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], &quot;;&quot;, TagBox[&quot;z&quot;, HypergeometricPFQ, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> <mo> &#8733; </mo> <mrow> <mfrac> <mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mn> 3 </mn> </msqrt> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </mfrac> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mroot> <mi> z </mi> <mn> 3 </mn> </mroot> </mrow> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mfrac> <mn> 1 </mn> <mn> 3 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mfrac> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 3 </mn> </mrow> <mo> &#8290; </mo> <msubsup> <mi> b </mi> <mn> 1 </mn> <mn> 2 </mn> </msubsup> </mrow> <mo> + </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msub> <mi> b </mi> <mn> 1 </mn> </msub> </mrow> <mo> - </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <msubsup> <mi> b </mi> <mn> 2 </mn> <mn> 2 </mn> </msubsup> </mrow> <mo> + </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> </mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mrow> <mn> 9 </mn> <mo> &#8290; </mo> <mroot> <mi> z </mi> <mn> 3 </mn> </mroot> </mrow> </mfrac> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 162 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 9 </mn> <mo> &#8290; </mo> <msubsup> <mi> b </mi> <mn> 1 </mn> <mn> 4 </mn> </msubsup> </mrow> <mo> - </mo> <mrow> <mn> 6 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> </mrow> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msubsup> <mi> b </mi> <mn> 1 </mn> <mn> 3 </mn> </msubsup> </mrow> <mo> + </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 9 </mn> <mo> &#8290; </mo> <msubsup> <mi> b </mi> <mn> 2 </mn> <mn> 2 </mn> </msubsup> </mrow> <mo> - </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msubsup> <mi> b </mi> <mn> 1 </mn> <mn> 2 </mn> </msubsup> </mrow> <mo> - </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 6 </mn> <mo> &#8290; </mo> <msubsup> <mi> b </mi> <mn> 2 </mn> <mn> 3 </mn> </msubsup> </mrow> <mo> + </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <msubsup> <mi> b </mi> <mn> 2 </mn> <mn> 2 </mn> </msubsup> </mrow> <mo> - </mo> <mrow> <mn> 17 </mn> <mo> &#8290; </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> </mrow> <mo> + </mo> <mn> 4 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msub> <mi> b </mi> <mn> 1 </mn> </msub> </mrow> <mo> + </mo> <mrow> <mn> 9 </mn> <mo> &#8290; </mo> <msubsup> <mi> b </mi> <mn> 2 </mn> <mn> 4 </mn> </msubsup> </mrow> <mo> - </mo> <mrow> <mn> 12 </mn> <mo> &#8290; </mo> <msubsup> <mi> b </mi> <mn> 2 </mn> <mn> 3 </mn> </msubsup> </mrow> <mo> + </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <msubsup> <mi> b </mi> <mn> 2 </mn> <mn> 2 </mn> </msubsup> </mrow> <mo> - </mo> <mrow> <mn> 12 </mn> <mo> &#8290; </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> </mrow> <mo> + </mo> <mn> 4 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mo> &#8230; </mo> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <mi> z </mi> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> <semantics> <mo> &#8594; </mo> <annotation encoding='Mathematica'> &quot;\[Rule]&quot; </annotation> </semantics> <mi> &#8734; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <ci> Proportional </ci> <apply> <ci> HypergeometricPFQ </ci> <list /> <list> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </list> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <apply> <ci> Gamma </ci> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 3 </cn> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <apply> <times /> <cn type='rational'> 1 <sep /> 3 </cn> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -3 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 9 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 3 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 162 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 2 <sep /> 3 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 9 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 6 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 9 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 6 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 17 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='integer'> 4 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 9 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 12 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 12 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='integer'> 4 </cn> </apply> </apply> <ci> &#8230; </ci> </apply> </apply> </apply> <apply> <ci> Rule </ci> <apply> <abs /> <ci> z </ci> </apply> <infinity /> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b_", "1"], ",", SubscriptBox["b_", "2"]]], "}"]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Gamma", "[", SubscriptBox["bb", "1"], "]"]], " ", RowBox[List["Gamma", "[", SubscriptBox["bb", "2"], "]"]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["3", " ", SuperscriptBox["z", RowBox[List["1", "/", "3"]]]]]], " ", SuperscriptBox["z", RowBox[List[FractionBox["1", "3"], " ", RowBox[List["(", RowBox[List["1", "-", SubscriptBox["bb", "1"], "-", SubscriptBox["bb", "2"]]], ")"]]]]], " ", RowBox[List["(", RowBox[List["1", "+", FractionBox[RowBox[List[RowBox[List["-", "2"]], "-", RowBox[List["3", " ", SubsuperscriptBox["bb", "1", "2"]]], "+", RowBox[List["3", " ", SubscriptBox["bb", "2"]]], "-", RowBox[List["3", " ", SubsuperscriptBox["bb", "2", "2"]]], "+", RowBox[List["3", " ", SubscriptBox["bb", "1"], " ", RowBox[List["(", RowBox[List["1", "+", SubscriptBox["bb", "2"]]], ")"]]]]]], RowBox[List["9", " ", SuperscriptBox["z", RowBox[List["1", "/", "3"]]]]]], "+", FractionBox[RowBox[List["4", "+", RowBox[List["9", " ", SubsuperscriptBox["bb", "1", "4"]]], "-", RowBox[List["12", " ", SubscriptBox["bb", "2"]]], "+", RowBox[List["3", " ", SubsuperscriptBox["bb", "2", "2"]]], "-", RowBox[List["12", " ", SubsuperscriptBox["bb", "2", "3"]]], "+", RowBox[List["9", " ", SubsuperscriptBox["bb", "2", "4"]]], "-", RowBox[List["6", " ", SubsuperscriptBox["bb", "1", "3"], " ", RowBox[List["(", RowBox[List["2", "+", RowBox[List["3", " ", SubscriptBox["bb", "2"]]]]], ")"]]]], "+", RowBox[List["3", " ", SubsuperscriptBox["bb", "1", "2"], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["3", " ", SubscriptBox["bb", "2"]]], "+", RowBox[List["9", " ", SubsuperscriptBox["bb", "2", "2"]]]]], ")"]]]], "-", RowBox[List["3", " ", SubscriptBox["bb", "1"], " ", RowBox[List["(", RowBox[List["4", "-", RowBox[List["17", " ", SubscriptBox["bb", "2"]]], "+", RowBox[List["3", " ", SubsuperscriptBox["bb", "2", "2"]]], "+", RowBox[List["6", " ", SubsuperscriptBox["bb", "2", "3"]]]]], ")"]]]]]], RowBox[List["162", " ", SuperscriptBox["z", RowBox[List["2", "/", "3"]]]]]], "+", "\[Ellipsis]"]], ")"]]]], RowBox[List["2", " ", SqrtBox["3"], " ", "\[Pi]"]]], "/;", RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "\[Rule]", "\[Infinity]"]], ")"]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29





© 1998-2014 Wolfram Research, Inc.