Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
HypergeometricPFQRegularized






Mathematica Notation

Traditional Notation









Hypergeometric Functions > HypergeometricPFQRegularized[{a1,...,ap},{b1,...,bq},z] > Specific values > Specialized values > Case 1F~q





http://functions.wolfram.com/07.32.03.0079.01









  


  










Input Form





HypergeometricPFQRegularized[{1}, {(m + 1)/q, (m + 2)/q, \[Ellipsis], (m + q)/q}, z] == ((2 Pi)^((1 - q)/2)/(z^(m/q) Sqrt[q])) (Sum[Exp[q Exp[(2 Pi I k)/q] z^(1/q)] Exp[-((2 Pi I k m)/q)], {k, 0, q - 1}] - q^(m + 1) Sum[z^(m/q - k) (1/(q^(q k) (m - q k)!)), {k, 1, Floor[m/q]}]) /; Element[q, Integers] && q > 0 && Element[m, Integers] && m >= 0










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", "1", "}"]], ",", RowBox[List["{", RowBox[List[FractionBox[RowBox[List["m", "+", "1"]], "q"], ",", FractionBox[RowBox[List["m", "+", "2"]], "q"], ",", "\[Ellipsis]", ",", FractionBox[RowBox[List["m", "+", "q"]], "q"]]], "}"]], ",", "z"]], "]"]], "\[Equal]", RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["2", " ", "\[Pi]"]], ")"]], FractionBox[RowBox[List["1", "-", "q"]], "2"]], " ", SuperscriptBox["z", RowBox[List["-", FractionBox["m", "q"]]]]]], SqrtBox["q"]], RowBox[List["(", RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["q", "-", "1"]]], RowBox[List[RowBox[List["Exp", "[", RowBox[List["q", " ", RowBox[List["Exp", "[", FractionBox[RowBox[List["2", "\[Pi]", " ", "\[ImaginaryI]", " ", "k"]], "q"], "]"]], SuperscriptBox["z", RowBox[List["1", "/", "q"]]]]], "]"]], RowBox[List["Exp", "[", RowBox[List["-", FractionBox[RowBox[List["2", "\[Pi]", " ", "\[ImaginaryI]", " ", "k", " ", "m"]], "q"]]], "]"]]]]]], "-", RowBox[List[SuperscriptBox["q", RowBox[List["m", "+", "1"]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], RowBox[List["Floor", "[", FractionBox["m", "q"], "]"]]], RowBox[List[SuperscriptBox["z", RowBox[List[FractionBox["m", "q"], "-", "k"]]], FractionBox[SuperscriptBox["q", RowBox[List[RowBox[List["-", "q"]], " ", "k"]]], RowBox[List[RowBox[List["(", RowBox[List["m", "-", RowBox[List["q", " ", "k"]]]], ")"]], "!"]]]]]]]]]]], ")"]]]]]], "/;", RowBox[List[RowBox[List["q", "\[Element]", "Integers"]], "\[And]", RowBox[List["q", ">", "0"]], "\[And]", RowBox[List["m", "\[Element]", "Integers"]], "\[And]", RowBox[List["m", "\[GreaterEqual]", "0"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 1 </mn> </msub> <msub> <mover> <mi> F </mi> <mo> ~ </mo> </mover> <mn> 4 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> ; </mo> <mrow> <mfrac> <mrow> <mi> m </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mi> q </mi> </mfrac> <mo> , </mo> <mfrac> <mrow> <mi> m </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mi> q </mi> </mfrac> <mo> , </mo> <mo> &#8230; </mo> <mo> , </mo> <mfrac> <mrow> <mi> m </mi> <mo> + </mo> <mi> q </mi> </mrow> <mi> q </mi> </mfrac> </mrow> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;1&quot;, TraditionalForm]], SubscriptBox[OverscriptBox[&quot;F&quot;, &quot;~&quot;], FormBox[&quot;4&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[TagBox[&quot;1&quot;, HypergeometricPFQ, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[RowBox[List[TagBox[FractionBox[RowBox[List[&quot;m&quot;, &quot;+&quot;, &quot;1&quot;]], &quot;q&quot;], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[FractionBox[RowBox[List[&quot;m&quot;, &quot;+&quot;, &quot;2&quot;]], &quot;q&quot;], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[&quot;\[Ellipsis]&quot;, HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[FractionBox[RowBox[List[&quot;m&quot;, &quot;+&quot;, &quot;q&quot;]], &quot;q&quot;], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], &quot;;&quot;, TagBox[&quot;z&quot;, HypergeometricPFQ, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, True]], HypergeometricPFQ] </annotation> </semantics> <mo> &#10869; </mo> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mfrac> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> q </mi> </mrow> <mn> 2 </mn> </mfrac> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mo> - </mo> <mfrac> <mi> m </mi> <mi> q </mi> </mfrac> </mrow> </msup> </mrow> <msqrt> <mi> q </mi> </msqrt> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mi> q </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <mrow> <mi> exp </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mi> q </mi> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mi> q </mi> </mfrac> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 1 </mn> <mo> / </mo> <mi> q </mi> </mrow> </msup> </mrow> <mo> - </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> k </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mi> q </mi> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <msup> <mi> q </mi> <mrow> <mi> m </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow> <mo> &#8970; </mo> <mfrac> <mi> m </mi> <mi> q </mi> </mfrac> <mo> &#8971; </mo> </mrow> </munderover> <mfrac> <mrow> <msup> <mi> z </mi> <mrow> <mfrac> <mi> m </mi> <mi> q </mi> </mfrac> <mo> - </mo> <mi> k </mi> </mrow> </msup> <mo> &#8290; </mo> <msup> <mi> q </mi> <mrow> <mrow> <mo> - </mo> <mi> q </mi> </mrow> <mo> &#8290; </mo> <mi> k </mi> </mrow> </msup> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mi> q </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mfrac> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> q </mi> <mo> &#8712; </mo> <msup> <mi> &#8469; </mi> <mo> + </mo> </msup> </mrow> <mo> &#8743; </mo> <mrow> <mi> m </mi> <mo> &#8712; </mo> <mi> &#8469; </mi> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> HypergeometricPFQ </ci> <list> <cn type='integer'> 1 </cn> </list> <list> <apply> <times /> <apply> <plus /> <ci> m </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <ci> q </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <ci> m </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> q </ci> <cn type='integer'> -1 </cn> </apply> </apply> <ci> &#8230; </ci> <apply> <times /> <apply> <plus /> <ci> m </ci> <ci> q </ci> </apply> <apply> <power /> <ci> q </ci> <cn type='integer'> -1 </cn> </apply> </apply> </list> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> q </ci> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> m </ci> <apply> <power /> <ci> q </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <ci> q </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <plus /> <ci> q </ci> <cn type='integer'> -1 </cn> </apply> </uplimit> <apply> <exp /> <apply> <plus /> <apply> <times /> <ci> q </ci> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> <imaginaryi /> <ci> k </ci> <apply> <power /> <ci> q </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> q </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> <imaginaryi /> <ci> k </ci> <ci> m </ci> <apply> <power /> <ci> q </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> q </ci> <apply> <plus /> <ci> m </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <apply> <floor /> <apply> <times /> <ci> m </ci> <apply> <power /> <ci> q </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </uplimit> <apply> <times /> <apply> <power /> <ci> z </ci> <apply> <plus /> <apply> <times /> <ci> m </ci> <apply> <power /> <ci> q </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> </apply> </apply> <apply> <power /> <ci> q </ci> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> q </ci> </apply> <ci> k </ci> </apply> </apply> <apply> <power /> <apply> <factorial /> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> q </ci> <ci> k </ci> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <in /> <ci> q </ci> <apply> <ci> SuperPlus </ci> <ci> &#8469; </ci> </apply> </apply> <apply> <in /> <ci> m </ci> <ci> &#8469; </ci> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", "1", "}"]], ",", RowBox[List["{", RowBox[List[FractionBox[RowBox[List["m_", "+", "1"]], "q_"], ",", FractionBox[RowBox[List["m_", "+", "2"]], "q_"], ",", "\[Ellipsis]_", ",", FractionBox[RowBox[List["m_", "+", "q_"]], "q_"]]], "}"]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["2", " ", "\[Pi]"]], ")"]], FractionBox[RowBox[List["1", "-", "q"]], "2"]], " ", SuperscriptBox["z", RowBox[List["-", FractionBox["m", "q"]]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["q", "-", "1"]]], RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["q", " ", SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List["2", " ", "\[Pi]", " ", "\[ImaginaryI]", " ", "k"]], "q"]], " ", SuperscriptBox["z", RowBox[List["1", "/", "q"]]]]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox[RowBox[List["2", " ", "\[Pi]", " ", "\[ImaginaryI]", " ", "k", " ", "m"]], "q"]]]]]]]], "-", RowBox[List[SuperscriptBox["q", RowBox[List["m", "+", "1"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], RowBox[List["Floor", "[", FractionBox["m", "q"], "]"]]], FractionBox[RowBox[List[SuperscriptBox["z", RowBox[List[FractionBox["m", "q"], "-", "k"]]], " ", SuperscriptBox["q", RowBox[List[RowBox[List["-", "q"]], " ", "k"]]]]], RowBox[List[RowBox[List["(", RowBox[List["m", "-", RowBox[List["q", " ", "k"]]]], ")"]], "!"]]]]]]]]], ")"]]]], SqrtBox["q"]], "/;", RowBox[List[RowBox[List["q", "\[Element]", "Integers"]], "&&", RowBox[List["q", ">", "0"]], "&&", RowBox[List["m", "\[Element]", "Integers"]], "&&", RowBox[List["m", "\[GreaterEqual]", "0"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29





© 1998-2014 Wolfram Research, Inc.