Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
HypergeometricPFQRegularized






Mathematica Notation

Traditional Notation









Hypergeometric Functions > HypergeometricPFQRegularized[{a1,...,ap},{b1,...,bq},z] > Series representations > Main terms of asymptotic expansions





http://functions.wolfram.com/07.32.06.0041.01









  


  










Input Form





HypergeometricPFQRegularized[{Subscript[a, 1], \[Ellipsis], Subscript[a, p]}, {Subscript[b, 1], \[Ellipsis], Subscript[b, q]}, z] \[Proportional] Sum[(Subscript[c, k] (1 + O[1/z]))/(-z)^Subscript[a, k], {k, 1, p}] + KroneckerDelta[q, p + 1] Subscript[e, 1] (-z)^\[Chi] Cos[2 Sqrt[-z] + \[Chi] Pi] (1 + O[1/Sqrt[-z]]) + (UnitStep[q - p] - KroneckerDelta[q, p + 1]) Subscript[e, 2] z^\[Chi] Exp[\[Beta] z^(1/\[Beta])] (1 + O[1/z^(1/\[Beta])]) /; (Abs[z] -> Infinity) && \[Beta] == q - p + 1 && \[Chi] == (1/\[Beta]) ((\[Beta] - 1)/2 + Sum[Subscript[a, k], {k, 1, p}] - Sum[Subscript[b, k], {k, 1, q}]) && Subscript[c, k] == (Gamma[Subscript[a, k]] Product[If[j == k, 1, Gamma[Subscript[a, j] - Subscript[a, k]]], {j, 1, p}])/ (Product[Gamma[Subscript[a, j]], {j, 1, p}] Product[Gamma[Subscript[b, j] - Subscript[a, k]], {j, 1, q}]) && 2 Subscript[e, 2] == Subscript[e, 1] == (2 (2 Pi)^((1 - \[Beta])/2))/ (Sqrt[\[Beta]] Product[Gamma[Subscript[a, k]], {k, 1, p}]) && ForAll[{j, k}, Element[{j, k}, Integers] && j != k && 1 <= j <= p && 1 <= k <= p, Subscript[a, j] != Subscript[a, k]]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["a", "p"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["b", "q"]]], "}"]], ",", "z"]], "]"]], "\[Proportional]", RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], "p"], RowBox[List[SubscriptBox["c", "k"], SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List["-", SubscriptBox["a", "k"]]]], RowBox[List["(", RowBox[List["1", "+", RowBox[List["O", "[", FractionBox["1", "z"], "]"]]]], ")"]]]]]], "+", RowBox[List[RowBox[List["KroneckerDelta", "[", RowBox[List["q", ",", RowBox[List["p", "+", "1"]]]], "]"]], SubscriptBox["e", "1"], SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], "\[Chi]"], RowBox[List["Cos", "[", RowBox[List[RowBox[List["2", " ", SqrtBox[RowBox[List["-", "z"]]]]], "+", RowBox[List["\[Chi]", " ", "\[Pi]"]]]], "]"]], RowBox[List["(", RowBox[List["1", "+", RowBox[List["O", "[", FractionBox["1", SqrtBox[RowBox[List["-", "z"]]]], "]"]]]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["UnitStep", "[", RowBox[List["q", "-", "p"]], "]"]], "-", RowBox[List["KroneckerDelta", "[", RowBox[List["q", ",", RowBox[List["p", "+", "1"]]]], "]"]]]], ")"]], SubscriptBox["e", "2"], " ", SuperscriptBox["z", "\[Chi]"], " ", RowBox[List["Exp", "[", RowBox[List["\[Beta]", " ", SuperscriptBox["z", FractionBox["1", "\[Beta]"]]]], "]"]], RowBox[List["(", RowBox[List["1", "+", RowBox[List["O", "[", FractionBox["1", SuperscriptBox["z", RowBox[List["1", "/", "\[Beta]"]]]], "]"]]]], ")"]]]]]]]], "/;", "\[InvisibleSpace]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "\[Rule]", "\[Infinity]"]], ")"]], "\[And]", RowBox[List["\[Beta]", "\[Equal]", RowBox[List["q", "-", "p", "+", "1"]]]], "\[And]", RowBox[List["\[Chi]", "\[Equal]", RowBox[List[FractionBox["1", "\[Beta]"], RowBox[List["(", RowBox[List[FractionBox[RowBox[List["\[Beta]", "-", "1"]], "2"], "+", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], "p"], SubscriptBox["a", "k"]]], "-", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], "q"], SubscriptBox["b", "k"]]]]], ")"]]]]]], "\[And]", RowBox[List[SubscriptBox["c", "k"], "\[Equal]", FractionBox[RowBox[List[RowBox[List["Gamma", "[", SubscriptBox["a", "k"], "]"]], RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["j", "=", "1"]], "p"], RowBox[List["If", "[", RowBox[List[RowBox[List["j", "\[Equal]", "k"]], ",", "1", ",", RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["a", "j"], "-", SubscriptBox["a", "k"]]], "]"]]]], "]"]]]]]], RowBox[List[RowBox[List["(", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["j", "=", "1"]], "p"], RowBox[List["Gamma", "[", SubscriptBox["a", "j"], "]"]]]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["j", "=", "1"]], "q"], RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["b", "j"], "-", SubscriptBox["a", "k"]]], "]"]]]]]]]]], "\[And]", RowBox[List[RowBox[List["2", SubscriptBox["e", "2"]]], "\[Equal]", SubscriptBox["e", "1"], "\[Equal]", FractionBox[RowBox[List["2", SuperscriptBox[RowBox[List["(", RowBox[List["2", " ", "\[Pi]"]], ")"]], FractionBox[RowBox[List["1", "-", "\[Beta]"]], "2"]]]], RowBox[List[SqrtBox["\[Beta]"], RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "1"]], "p"], RowBox[List["Gamma", "[", SubscriptBox["a", "k"], "]"]]]]]]]]], "\[And]", RowBox[List[SubscriptBox["\[ForAll]", RowBox[List[RowBox[List["{", RowBox[List["j", ",", "k"]], "}"]], ",", RowBox[List[RowBox[List[RowBox[List["{", RowBox[List["j", ",", "k"]], "}"]], "\[Element]", "Integers"]], "\[And]", RowBox[List["j", "\[NotEqual]", "k"]], "\[And]", RowBox[List["1", "\[LessEqual]", "j", "\[LessEqual]", "p"]], "\[And]", RowBox[List["1", "\[LessEqual]", "k", "\[LessEqual]", "p"]]]]]]], RowBox[List["(", RowBox[List[SubscriptBox["a", "j"], "\[NotEqual]", SubscriptBox["a", "k"]]], ")"]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mi> p </mi> </msub> <msub> <mover> <mi> F </mi> <mo> ~ </mo> </mover> <mi> q </mi> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> , </mo> <mo> &#8230; </mo> <mo> , </mo> <msub> <mi> a </mi> <mi> p </mi> </msub> </mrow> <mo> ; </mo> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> , </mo> <mo> &#8230; </mo> <mo> , </mo> <msub> <mi> b </mi> <mi> q </mi> </msub> </mrow> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;p&quot;, TraditionalForm]], SubscriptBox[OverscriptBox[&quot;F&quot;, &quot;~&quot;], FormBox[&quot;q&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[SubscriptBox[&quot;a&quot;, &quot;1&quot;], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[&quot;\[Ellipsis]&quot;, HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[SubscriptBox[&quot;a&quot;, &quot;p&quot;], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, True]], &quot;;&quot;, TagBox[TagBox[RowBox[List[TagBox[SubscriptBox[&quot;b&quot;, &quot;1&quot;], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[&quot;\[Ellipsis]&quot;, HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[SubscriptBox[&quot;b&quot;, &quot;q&quot;], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, True]], &quot;;&quot;, TagBox[&quot;z&quot;, HypergeometricPFQ, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, True]], HypergeometricPFQ] </annotation> </semantics> <mo> &#8733; </mo> <mrow> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> p </mi> </munderover> <mrow> <msub> <mi> c </mi> <mi> k </mi> </msub> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <msub> <mi> a </mi> <mi> k </mi> </msub> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mrow> <mi> O </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mn> 1 </mn> <mi> z </mi> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> + </mo> <mtext> </mtext> <mrow> <msub> <semantics> <mi> &#948; </mi> <annotation-xml encoding='MathML-Content'> <ci> KroneckerDelta </ci> </annotation-xml> </semantics> <mrow> <mi> q </mi> <mo> , </mo> <mrow> <mi> p </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> </msub> <mo> &#8290; </mo> <msub> <mi> e </mi> <mn> 1 </mn> </msub> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mi> &#967; </mi> </msup> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#967; </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mrow> <mi> O </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mfrac> <mn> 1 </mn> <msqrt> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> </mfrac> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <semantics> <mi> &#952; </mi> <annotation-xml encoding='MathML-Content'> <ci> UnitStep </ci> </annotation-xml> </semantics> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> q </mi> <mo> - </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <msub> <semantics> <mi> &#948; </mi> <annotation-xml encoding='MathML-Content'> <ci> KroneckerDelta </ci> </annotation-xml> </semantics> <mrow> <mi> q </mi> <mo> , </mo> <mrow> <mi> p </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> </msub> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msub> <mi> e </mi> <mn> 2 </mn> </msub> <mo> &#8290; </mo> <msup> <mi> z </mi> <mi> &#967; </mi> </msup> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mi> &#946; </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 1 </mn> <mo> / </mo> <mi> &#946; </mi> </mrow> </msup> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mrow> <mi> O </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mn> 1 </mn> <msup> <mi> z </mi> <mrow> <mn> 1 </mn> <mo> / </mo> <mi> &#946; </mi> </mrow> </msup> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <mi> z </mi> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> <semantics> <mo> &#8594; </mo> <annotation encoding='Mathematica'> &quot;\[Rule]&quot; </annotation> </semantics> <mi> &#8734; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8743; </mo> <mrow> <mi> &#946; </mi> <mo> &#10869; </mo> <mrow> <mi> q </mi> <mo> - </mo> <mi> p </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> &#8743; </mo> <mrow> <mi> &#967; </mi> <mo> &#10869; </mo> <mrow> <mfrac> <mn> 1 </mn> <mi> &#946; </mi> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mrow> <mi> &#946; </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> + </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> p </mi> </munderover> <msub> <mi> a </mi> <mi> k </mi> </msub> </mrow> <mo> - </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> q </mi> </munderover> <msub> <mi> b </mi> <mi> k </mi> </msub> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> &#8743; </mo> <mrow> <msub> <mi> c </mi> <mi> k </mi> </msub> <mo> &#10869; </mo> <mfrac> <mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <msub> <mi> a </mi> <mi> k </mi> </msub> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8719; </mo> <munder> <mrow> <mi> j </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow> <mi> j </mi> <mo> &#8800; </mo> <mi> k </mi> </mrow> </munder> <mi> p </mi> </munderover> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msub> <mi> a </mi> <mi> j </mi> </msub> <mo> - </mo> <msub> <mi> a </mi> <mi> k </mi> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <munderover> <mo> &#8719; </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> p </mi> </munderover> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <msub> <mi> a </mi> <mi> j </mi> </msub> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8719; </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> q </mi> </munderover> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msub> <mi> b </mi> <mi> j </mi> </msub> <mo> - </mo> <msub> <mi> a </mi> <mi> k </mi> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mfrac> </mrow> <mo> &#8743; </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msub> <mi> e </mi> <mn> 2 </mn> </msub> </mrow> <mo> &#10869; </mo> <msub> <mi> e </mi> <mn> 1 </mn> </msub> <mo> &#10869; </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mfrac> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> &#946; </mi> </mrow> <mn> 2 </mn> </mfrac> </msup> </mrow> <mrow> <msqrt> <mi> &#946; </mi> </msqrt> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8719; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> p </mi> </munderover> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <msub> <mi> a </mi> <mi> k </mi> </msub> <mo> ) </mo> </mrow> </mrow> </mrow> </mfrac> </mrow> <mo> &#8743; </mo> <mrow> <msub> <mo> &#8704; </mo> <mrow> <mrow> <mo> { </mo> <mrow> <mi> j </mi> <mo> , </mo> <mi> k </mi> </mrow> <mo> } </mo> </mrow> <mo> , </mo> <mrow> <mrow> <mrow> <mo> { </mo> <mrow> <mi> j </mi> <mo> , </mo> <mi> k </mi> </mrow> <mo> } </mo> </mrow> <mo> &#8712; </mo> <semantics> <mi> &#8484; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubleStruckCapitalZ]&quot;, Function[Integers]] </annotation> </semantics> </mrow> <mo> &#8743; </mo> <mrow> <mi> j </mi> <mo> &#8800; </mo> <mi> k </mi> </mrow> <mo> &#8743; </mo> <mrow> <mn> 1 </mn> <mo> &#8804; </mo> <mi> j </mi> <mo> &#8804; </mo> <mi> p </mi> </mrow> <mo> &#8743; </mo> <mrow> <mn> 1 </mn> <mo> &#8804; </mo> <mi> k </mi> <mo> &#8804; </mo> <mi> p </mi> </mrow> </mrow> </mrow> </msub> <mrow> <mo> ( </mo> <mrow> <msub> <mi> a </mi> <mi> j </mi> </msub> <mo> &#8800; </mo> <msub> <mi> a </mi> <mi> k </mi> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> FormBox </ci> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <apply> <ci> TagBox </ci> <apply> <ci> TagBox </ci> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <apply> <ci> SubscriptBox </ci> <ms> &#62387; </ms> <apply> <ci> FormBox </ci> <ms> p </ms> <ci> TraditionalForm </ci> </apply> </apply> <apply> <ci> SubscriptBox </ci> <apply> <ci> OverscriptBox </ci> <ms> F </ms> <ms> ~ </ms> </apply> <apply> <ci> FormBox </ci> <ms> q </ms> <ci> TraditionalForm </ci> </apply> </apply> </list> </apply> <ms> &#8289; </ms> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> TagBox </ci> <apply> <ci> TagBox </ci> <apply> <ci> RowBox </ci> <list> <apply> <ci> TagBox </ci> <apply> <ci> SubscriptBox </ci> <ms> a </ms> <ms> 1 </ms> </apply> <ci> HypergeometricPFQ </ci> <apply> <ci> Rule </ci> <ci> Editable </ci> <true /> </apply> </apply> <ms> , </ms> <apply> <ci> TagBox </ci> <ms> &#8230; </ms> <ci> HypergeometricPFQ </ci> <apply> <ci> Rule </ci> <ci> Editable </ci> <true /> </apply> </apply> <ms> , </ms> <apply> <ci> TagBox </ci> <apply> <ci> SubscriptBox </ci> <ms> a </ms> <ms> p </ms> </apply> <ci> HypergeometricPFQ </ci> <apply> <ci> Rule </ci> <ci> Editable </ci> <true /> </apply> </apply> </list> </apply> <apply> <ci> InterpretTemplate </ci> <apply> <ci> Function </ci> <list> <apply> <ci> SlotSequence </ci> <cn type='integer'> 1 </cn> </apply> </list> </apply> </apply> </apply> <ci> HypergeometricPFQ </ci> <apply> <ci> Rule </ci> <ci> Editable </ci> <true /> </apply> </apply> <ms> ; </ms> <apply> <ci> TagBox </ci> <apply> <ci> TagBox </ci> <apply> <ci> RowBox </ci> <list> <apply> <ci> TagBox </ci> <apply> <ci> SubscriptBox </ci> <ms> b </ms> <ms> 1 </ms> </apply> <ci> HypergeometricPFQ </ci> <apply> <ci> Rule </ci> <ci> Editable </ci> <true /> </apply> </apply> <ms> , </ms> <apply> <ci> TagBox </ci> <ms> &#8230; </ms> <ci> HypergeometricPFQ </ci> <apply> <ci> Rule </ci> <ci> Editable </ci> <true /> </apply> </apply> <ms> , </ms> <apply> <ci> TagBox </ci> <apply> <ci> SubscriptBox </ci> <ms> b </ms> <ms> q </ms> </apply> <ci> HypergeometricPFQ </ci> <apply> <ci> Rule </ci> <ci> Editable </ci> <true /> </apply> </apply> </list> </apply> <apply> <ci> InterpretTemplate </ci> <apply> <ci> Function </ci> <list> <apply> <ci> SlotSequence </ci> <cn type='integer'> 1 </cn> </apply> </list> </apply> </apply> </apply> <ci> HypergeometricPFQ </ci> <apply> <ci> Rule </ci> <ci> Editable </ci> <true /> </apply> </apply> <ms> ; </ms> <apply> <ci> TagBox </ci> <ms> z </ms> <ci> HypergeometricPFQ </ci> <apply> <ci> Rule </ci> <ci> Editable </ci> <true /> </apply> </apply> </list> </apply> <ms> ) </ms> </list> </apply> </list> </apply> <apply> <ci> InterpretTemplate </ci> <apply> <ci> Function </ci> <apply> <ci> HypergeometricPFQ </ci> <apply> <ci> Slot </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Slot </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Slot </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> </apply> <apply> <ci> Rule </ci> <ci> Editable </ci> <true /> </apply> </apply> <ci> HypergeometricPFQ </ci> </apply> <ms> &#8733; </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <apply> <ci> UnderoverscriptBox </ci> <ms> &#8721; </ms> <apply> <ci> RowBox </ci> <list> <ms> k </ms> <ms> = </ms> <ms> 1 </ms> </list> </apply> <ms> p </ms> </apply> <apply> <ci> RowBox </ci> <list> <apply> <ci> SubscriptBox </ci> <ms> c </ms> <ms> k </ms> </apply> <apply> <ci> SuperscriptBox </ci> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> - </ms> <ms> z </ms> </list> </apply> <ms> ) </ms> </list> </apply> <apply> <ci> RowBox </ci> <list> <ms> - </ms> <apply> <ci> SubscriptBox </ci> <ms> a </ms> <ms> k </ms> </apply> </list> </apply> </apply> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> 1 </ms> <ms> + </ms> <apply> <ci> RowBox </ci> <list> <ms> O </ms> <ms> ( </ms> <apply> <ci> FractionBox </ci> <ms> 1 </ms> <ms> z </ms> </apply> <ms> ) </ms> </list> </apply> </list> </apply> <ms> ) </ms> </list> </apply> </list> </apply> </list> </apply> <ms> + </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> SubscriptBox </ci> <apply> <ci> InterpretationBox </ci> <ms> &#948; </ms> <ci> KroneckerDelta </ci> <apply> <ci> Rule </ci> <ci> Editable </ci> <false /> </apply> <apply> <ci> Rule </ci> <ci> Selectable </ci> <false /> </apply> </apply> <apply> <ci> RowBox </ci> <list> <ms> q </ms> <ms> , </ms> <apply> <ci> RowBox </ci> <list> <ms> p </ms> <ms> + </ms> <ms> 1 </ms> </list> </apply> </list> </apply> </apply> <apply> <ci> SubscriptBox </ci> <ms> e </ms> <ms> 1 </ms> </apply> <apply> <ci> SuperscriptBox </ci> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> - </ms> <ms> z </ms> </list> </apply> <ms> ) </ms> </list> </apply> <ms> &#967; </ms> </apply> <apply> <ci> RowBox </ci> <list> <ms> cos </ms> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> &#960; </ms> <ms> &#967; </ms> </list> </apply> <ms> + </ms> <apply> <ci> RowBox </ci> <list> <ms> 2 </ms> <apply> <ci> SqrtBox </ci> <apply> <ci> RowBox </ci> <list> <ms> - </ms> <ms> z </ms> </list> </apply> </apply> </list> </apply> </list> </apply> <ms> ) </ms> </list> </apply> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> 1 </ms> <ms> + </ms> <apply> <ci> RowBox </ci> <list> <ms> O </ms> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> FractionBox </ci> <ms> 1 </ms> <apply> <ci> SqrtBox </ci> <apply> <ci> RowBox </ci> <list> <ms> - </ms> <ms> z </ms> </list> </apply> </apply> </apply> <ms> ) </ms> </list> </apply> </list> </apply> </list> </apply> <ms> ) </ms> </list> </apply> </list> </apply> <ms> + </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <apply> <ci> InterpretationBox </ci> <ms> &#952; </ms> <ci> UnitStep </ci> <apply> <ci> Rule </ci> <ci> Editable </ci> <false /> </apply> <apply> <ci> Rule </ci> <ci> Selectable </ci> <false /> </apply> </apply> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> q </ms> <ms> - </ms> <ms> p </ms> </list> </apply> <ms> ) </ms> </list> </apply> </list> </apply> <ms> - </ms> <apply> <ci> SubscriptBox </ci> <apply> <ci> InterpretationBox </ci> <ms> &#948; </ms> <ci> KroneckerDelta </ci> <apply> <ci> Rule </ci> <ci> Editable </ci> <false /> </apply> <apply> <ci> Rule </ci> <ci> Selectable </ci> <false /> </apply> </apply> <apply> <ci> RowBox </ci> <list> <ms> q </ms> <ms> , </ms> <apply> <ci> RowBox </ci> <list> <ms> p </ms> <ms> + </ms> <ms> 1 </ms> </list> </apply> </list> </apply> </apply> </list> </apply> <ms> ) </ms> </list> </apply> <apply> <ci> SubscriptBox </ci> <ms> e </ms> <ms> 2 </ms> </apply> <apply> <ci> SuperscriptBox </ci> <ms> z </ms> <ms> &#967; </ms> </apply> <apply> <ci> SuperscriptBox </ci> <ms> &#8519; </ms> <apply> <ci> RowBox </ci> <list> <ms> &#946; </ms> <apply> <ci> SuperscriptBox </ci> <ms> z </ms> <apply> <ci> RowBox </ci> <list> <ms> 1 </ms> <ms> / </ms> <ms> &#946; </ms> </list> </apply> </apply> </list> </apply> </apply> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> 1 </ms> <ms> + </ms> <apply> <ci> RowBox </ci> <list> <ms> O </ms> <ms> ( </ms> <apply> <ci> FractionBox </ci> <ms> 1 </ms> <apply> <ci> SuperscriptBox </ci> <ms> z </ms> <apply> <ci> RowBox </ci> <list> <ms> 1 </ms> <ms> / </ms> <ms> &#946; </ms> </list> </apply> </apply> </apply> <ms> ) </ms> </list> </apply> </list> </apply> <ms> ) </ms> </list> </apply> </list> </apply> </list> </apply> </list> </apply> <ms> /; </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> &#62979; </ms> <ms> z </ms> <ms> &#62980; </ms> </list> </apply> <ms> &#62754; </ms> <ms> &#8734; </ms> </list> </apply> <ms> ) </ms> </list> </apply> <ms> &#8743; </ms> <apply> <ci> RowBox </ci> <list> <ms> &#946; </ms> <ms> &#10869; </ms> <apply> <ci> RowBox </ci> <list> <ms> q </ms> <ms> - </ms> <ms> p </ms> <ms> + </ms> <ms> 1 </ms> </list> </apply> </list> </apply> <ms> &#8743; </ms> <apply> <ci> RowBox </ci> <list> <ms> &#967; </ms> <ms> &#10869; </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> FractionBox </ci> <ms> 1 </ms> <ms> &#946; </ms> </apply> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> FractionBox </ci> <apply> <ci> RowBox </ci> <list> <ms> &#946; </ms> <ms> - </ms> <ms> 1 </ms> </list> </apply> <ms> 2 </ms> </apply> <ms> + </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> UnderoverscriptBox </ci> <ms> &#8721; </ms> <apply> <ci> RowBox </ci> <list> <ms> k </ms> <ms> = </ms> <ms> 1 </ms> </list> </apply> <ms> p </ms> </apply> <apply> <ci> SubscriptBox </ci> <ms> a </ms> <ms> k </ms> </apply> </list> </apply> <ms> - </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> UnderoverscriptBox </ci> <ms> &#8721; </ms> <apply> <ci> RowBox </ci> <list> <ms> k </ms> <ms> = </ms> <ms> 1 </ms> </list> </apply> <ms> q </ms> </apply> <apply> <ci> SubscriptBox </ci> <ms> b </ms> <ms> k </ms> </apply> </list> </apply> </list> </apply> <ms> ) </ms> </list> </apply> </list> </apply> </list> </apply> <ms> &#8743; </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> SubscriptBox </ci> <ms> c </ms> <ms> k </ms> </apply> <ms> &#10869; </ms> <apply> <ci> FractionBox </ci> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> &#915; </ms> <ms> ( </ms> <apply> <ci> SubscriptBox </ci> <ms> a </ms> <ms> k </ms> </apply> <ms> ) </ms> </list> </apply> <apply> <ci> RowBox </ci> <list> <apply> <ci> ErrorBox </ci> <apply> <ci> UnderoverscriptBox </ci> <ms> &#8719; </ms> <apply> <ci> UnderscriptBox </ci> <apply> <ci> RowBox </ci> <list> <ms> j </ms> <ms> = </ms> <ms> 1 </ms> </list> </apply> <apply> <ci> RowBox </ci> <list> <ms> j </ms> <ms> &#8800; </ms> <ms> k </ms> </list> </apply> </apply> <ms> p </ms> </apply> </apply> <apply> <ci> RowBox </ci> <list> <ms> &#915; </ms> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> SubscriptBox </ci> <ms> a </ms> <ms> j </ms> </apply> <ms> - </ms> <apply> <ci> SubscriptBox </ci> <ms> a </ms> <ms> k </ms> </apply> </list> </apply> <ms> ) </ms> </list> </apply> </list> </apply> </list> </apply> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> UnderoverscriptBox </ci> <ms> &#8719; </ms> <apply> <ci> RowBox </ci> <list> <ms> j </ms> <ms> = </ms> <ms> 1 </ms> </list> </apply> <ms> p </ms> </apply> <apply> <ci> RowBox </ci> <list> <ms> &#915; </ms> <ms> ( </ms> <apply> <ci> SubscriptBox </ci> <ms> a </ms> <ms> j </ms> </apply> <ms> ) </ms> </list> </apply> </list> </apply> <ms> ) </ms> </list> </apply> <apply> <ci> RowBox </ci> <list> <apply> <ci> UnderoverscriptBox </ci> <ms> &#8719; </ms> <apply> <ci> RowBox </ci> <list> <ms> j </ms> <ms> = </ms> <ms> 1 </ms> </list> </apply> <ms> q </ms> </apply> <apply> <ci> RowBox </ci> <list> <ms> &#915; </ms> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> SubscriptBox </ci> <ms> b </ms> <ms> j </ms> </apply> <ms> - </ms> <apply> <ci> SubscriptBox </ci> <ms> a </ms> <ms> k </ms> </apply> </list> </apply> <ms> ) </ms> </list> </apply> </list> </apply> </list> </apply> </apply> </list> </apply> <ms> &#8743; </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> 2 </ms> <apply> <ci> SubscriptBox </ci> <ms> e </ms> <ms> 2 </ms> </apply> </list> </apply> <ms> &#10869; </ms> <apply> <ci> SubscriptBox </ci> <ms> e </ms> <ms> 1 </ms> </apply> <ms> &#10869; </ms> <apply> <ci> FractionBox </ci> <apply> <ci> RowBox </ci> <list> <ms> 2 </ms> <apply> <ci> SuperscriptBox </ci> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> 2 </ms> <ms> &#960; </ms> </list> </apply> <ms> ) </ms> </list> </apply> <apply> <ci> FractionBox </ci> <apply> <ci> RowBox </ci> <list> <ms> 1 </ms> <ms> - </ms> <ms> &#946; </ms> </list> </apply> <ms> 2 </ms> </apply> </apply> </list> </apply> <apply> <ci> RowBox </ci> <list> <apply> <ci> SqrtBox </ci> <ms> &#946; </ms> </apply> <apply> <ci> RowBox </ci> <list> <apply> <ci> UnderoverscriptBox </ci> <ms> &#8719; </ms> <apply> <ci> RowBox </ci> <list> <ms> k </ms> <ms> = </ms> <ms> 1 </ms> </list> </apply> <ms> p </ms> </apply> <apply> <ci> RowBox </ci> <list> <ms> &#915; </ms> <ms> ( </ms> <apply> <ci> SubscriptBox </ci> <ms> a </ms> <ms> k </ms> </apply> <ms> ) </ms> </list> </apply> </list> </apply> </list> </apply> </apply> </list> </apply> <ms> &#8743; </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> SubscriptBox </ci> <ms> &#8704; </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> { </ms> <apply> <ci> RowBox </ci> <list> <ms> j </ms> <ms> , </ms> <ms> k </ms> </list> </apply> <ms> } </ms> </list> </apply> <ms> , </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> { </ms> <apply> <ci> RowBox </ci> <list> <ms> j </ms> <ms> , </ms> <ms> k </ms> </list> </apply> <ms> } </ms> </list> </apply> <ms> &#8712; </ms> <apply> <ci> TagBox </ci> <ms> &#8484; </ms> <apply> <ci> Function </ci> <integers /> </apply> </apply> </list> </apply> <ms> &#8743; </ms> <apply> <ci> RowBox </ci> <list> <ms> j </ms> <ms> &#8800; </ms> <ms> k </ms> </list> </apply> <ms> &#8743; </ms> <apply> <ci> RowBox </ci> <list> <ms> 1 </ms> <ms> &#8804; </ms> <ms> j </ms> <ms> &#8804; </ms> <ms> p </ms> </list> </apply> <ms> &#8743; </ms> <apply> <ci> RowBox </ci> <list> <ms> 1 </ms> <ms> &#8804; </ms> <ms> k </ms> <ms> &#8804; </ms> <ms> p </ms> </list> </apply> </list> </apply> </list> </apply> </apply> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> SubscriptBox </ci> <ms> a </ms> <ms> j </ms> </apply> <ms> &#8800; </ms> <apply> <ci> SubscriptBox </ci> <ms> a </ms> <ms> k </ms> </apply> </list> </apply> <ms> ) </ms> </list> </apply> </list> </apply> </list> </apply> </list> </apply> <ci> TraditionalForm </ci> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a_", "1"], ",", "\[Ellipsis]_", ",", SubscriptBox["a_", "p_"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b_", "1"], ",", "\[Ellipsis]_", ",", SubscriptBox["b_", "q_"]]], "}"]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], "p"], RowBox[List[SubscriptBox["c", "k"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List["-", SubscriptBox["a", "k"]]]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["O", "[", FractionBox["1", "z"], "]"]]]], ")"]]]]]], "+", RowBox[List[RowBox[List["KroneckerDelta", "[", RowBox[List["q", ",", RowBox[List["p", "+", "1"]]]], "]"]], " ", SubscriptBox["e", "1"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], "\[Chi]"], " ", RowBox[List["Cos", "[", RowBox[List[RowBox[List["2", " ", SqrtBox[RowBox[List["-", "z"]]]]], "+", RowBox[List["\[Chi]", " ", "\[Pi]"]]]], "]"]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["SeriesData", "[", RowBox[List[RowBox[List["-", "z"]], ",", "\[Infinity]", ",", RowBox[List["{", "0", "}"]], ",", "0", ",", FractionBox["1", "2"]]], "]"]]]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["UnitStep", "[", RowBox[List["q", "-", "p"]], "]"]], "-", RowBox[List["KroneckerDelta", "[", RowBox[List["q", ",", RowBox[List["p", "+", "1"]]]], "]"]]]], ")"]], " ", SubscriptBox["e", "2"], " ", SuperscriptBox["z", "\[Chi]"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[Beta]", " ", SuperscriptBox["z", RowBox[List["1", "/", "\[Beta]"]]]]]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["SeriesData", "[", RowBox[List["z", ",", "\[Infinity]", ",", RowBox[List["{", "0", "}"]], ",", "0", ",", FractionBox["1", "\[Beta]"]]], "]"]]]], ")"]]]]]], "/;", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "\[Rule]", "\[Infinity]"]], ")"]], "&&", RowBox[List["\[Beta]", "\[Equal]", RowBox[List["q", "-", "p", "+", "1"]]]], "&&", RowBox[List["\[Chi]", "\[Equal]", FractionBox[RowBox[List[FractionBox[RowBox[List["\[Beta]", "-", "1"]], "2"], "+", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], "p"], SubscriptBox["a", "k"]]], "-", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], "q"], SubscriptBox["b", "k"]]]]], "\[Beta]"]]], "&&", RowBox[List[SubscriptBox["c", "k"], "\[Equal]", FractionBox[RowBox[List[RowBox[List["Gamma", "[", SubscriptBox["a", "k"], "]"]], " ", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["j", "=", "1"]], "p"], RowBox[List["If", "[", RowBox[List[RowBox[List["j", "\[Equal]", "k"]], ",", "1", ",", RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["a", "j"], "-", SubscriptBox["a", "k"]]], "]"]]]], "]"]]]]]], RowBox[List[RowBox[List["(", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["j", "=", "1"]], "p"], RowBox[List["Gamma", "[", SubscriptBox["a", "j"], "]"]]]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["j", "=", "1"]], "q"], RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["b", "j"], "-", SubscriptBox["a", "k"]]], "]"]]]]]]]]], "&&", RowBox[List[RowBox[List["2", " ", SubscriptBox["e", "2"]]], "\[Equal]", SubscriptBox["e", "1"], "\[Equal]", FractionBox[RowBox[List["2", " ", SuperscriptBox[RowBox[List["(", RowBox[List["2", " ", "\[Pi]"]], ")"]], FractionBox[RowBox[List["1", "-", "\[Beta]"]], "2"]]]], RowBox[List[SqrtBox["\[Beta]"], " ", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "1"]], "p"], RowBox[List["Gamma", "[", SubscriptBox["a", "k"], "]"]]]]]]]]], "&&", RowBox[List[SubscriptBox["\[ForAll]", RowBox[List[RowBox[List["{", RowBox[List["j", ",", "k"]], "}"]], ",", RowBox[List[RowBox[List[RowBox[List["{", RowBox[List["j", ",", "k"]], "}"]], "\[Element]", "Integers"]], "&&", RowBox[List["j", "\[NotEqual]", "k"]], "&&", RowBox[List["1", "\[LessEqual]", "j", "\[LessEqual]", "p"]], "&&", RowBox[List["1", "\[LessEqual]", "k", "\[LessEqual]", "p"]]]]]]], RowBox[List[SubscriptBox["a", "j"], "\[NotEqual]", SubscriptBox["a", "k"]]]]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29





© 1998- Wolfram Research, Inc.