Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











HypergeometricU






Mathematica Notation

Traditional Notation









Hypergeometric Functions > HypergeometricU[a,b,z] > Differentiation > Low-order differentiation > Mixed derivatives by parameters





http://functions.wolfram.com/07.33.20.0020.01









  


  










Input Form





Derivative[1, 0, 0][HypergeometricU][m, 2 m + n, z] + 2 Derivative[0, 1, 0][HypergeometricU][m, 2 m + n, z] == (-HypergeometricU[m, 2 m + n, z]) (Log[z] + PolyGamma[m]) + (1/(m - 1)!) Sum[(Binomial[m + n - 1, k] (k + m - 1)! PolyGamma[k + m])/ z^(k + m), {k, 0, m + n - 1}] + (1/(m - 1)!) Sum[Binomial[m + n - 1, k] (k + m - 1)! (-z)^(-k - m) (Sum[(LaguerreL[j - 1, -j, z] LaguerreL[k + m - j - 1, -k - m + j, -z])/ j, {j, 1, k + m - 1}] - E^z (SinhIntegral[z] - CoshIntegral[z]) LaguerreL[k + m - 1, -k - m, -z]), {k, 0, m + n - 1}] /; Element[m, Integers] && m > 0 && Element[n, Integers] && n >= 0










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[RowBox[List[SuperscriptBox["HypergeometricU", TagBox[RowBox[List["(", RowBox[List["1", ",", "0", ",", "0"]], ")"]], Derivative], Rule[MultilineFunction, None]], "[", RowBox[List["m", ",", RowBox[List[RowBox[List["2", " ", "m"]], "+", "n"]], ",", "z"]], "]"]], "+", RowBox[List["2", " ", RowBox[List[SuperscriptBox["HypergeometricU", TagBox[RowBox[List["(", RowBox[List["0", ",", "1", ",", "0"]], ")"]], Derivative], Rule[MultilineFunction, None]], "[", RowBox[List["m", ",", RowBox[List[RowBox[List["2", " ", "m"]], "+", "n"]], ",", "z"]], "]"]]]]]], "\[Equal]", RowBox[List[RowBox[List[RowBox[List["-", RowBox[List["HypergeometricU", "[", RowBox[List["m", ",", RowBox[List[RowBox[List["2", " ", "m"]], "+", "n"]], ",", "z"]], "]"]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["Log", "[", "z", "]"]], "+", RowBox[List["PolyGamma", "[", "m", "]"]]]], ")"]]]], "+", RowBox[List[FractionBox["1", RowBox[List[RowBox[List["(", RowBox[List["m", "-", "1"]], ")"]], "!"]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["m", "+", "n", "-", "1"]]], FractionBox[RowBox[List[RowBox[List["Binomial", "[", RowBox[List[RowBox[List["m", "+", "n", "-", "1"]], ",", "k"]], "]"]], " ", RowBox[List[RowBox[List["(", RowBox[List["k", "+", "m", "-", "1"]], ")"]], "!"]], " ", RowBox[List["PolyGamma", "[", RowBox[List["k", "+", "m"]], "]"]]]], SuperscriptBox["z", RowBox[List["k", "+", "m"]]]]]]]], "+", RowBox[List[FractionBox["1", RowBox[List[RowBox[List["(", RowBox[List["m", "-", "1"]], ")"]], "!"]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["m", "+", "n", "-", "1"]]], RowBox[List[RowBox[List["Binomial", "[", RowBox[List[RowBox[List["m", "+", "n", "-", "1"]], ",", "k"]], "]"]], " ", RowBox[List[RowBox[List["(", RowBox[List["k", "+", "m", "-", "1"]], ")"]], "!"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List[RowBox[List["-", "k"]], "-", "m"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "1"]], RowBox[List["k", "+", "m", "-", "1"]]], FractionBox[RowBox[List[RowBox[List["LaguerreL", "[", RowBox[List[RowBox[List["j", "-", "1"]], ",", RowBox[List["-", "j"]], ",", "z"]], "]"]], " ", RowBox[List["LaguerreL", "[", RowBox[List[RowBox[List["k", "+", "m", "-", "j", "-", "1"]], ",", RowBox[List[RowBox[List["-", "k"]], "-", "m", "+", "j"]], ",", RowBox[List["-", "z"]]]], "]"]]]], "j"]]], "-", RowBox[List[SuperscriptBox["\[ExponentialE]", "z"], " ", RowBox[List["(", RowBox[List[RowBox[List["SinhIntegral", "[", "z", "]"]], "-", RowBox[List["CoshIntegral", "[", "z", "]"]]]], ")"]], " ", RowBox[List["LaguerreL", "[", RowBox[List[RowBox[List["k", "+", "m", "-", "1"]], ",", RowBox[List[RowBox[List["-", "k"]], "-", "m"]], ",", RowBox[List["-", "z"]]]], "]"]]]]]], ")"]]]]]]]]]]]], "/;", RowBox[List[RowBox[List["m", "\[Element]", "Integers"]], "\[And]", RowBox[List["m", ">", "0"]], "\[And]", RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", "\[GreaterEqual]", "0"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mrow> <msup> <semantics> <mi> U </mi> <annotation encoding='Mathematica'> TagBox[&quot;U&quot;, HypergeometricU] </annotation> </semantics> <semantics> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> , </mo> <mn> 0 </mn> <mo> , </mo> <mn> 0 </mn> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, RowBox[List[&quot;1&quot;, &quot;,&quot;, &quot;0&quot;, &quot;,&quot;, &quot;0&quot;]], &quot;)&quot;]], Derivative] </annotation> </semantics> </msup> <mo> ( </mo> <mrow> <mi> m </mi> <mo> , </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> + </mo> <mi> n </mi> </mrow> <mo> , </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <msup> <semantics> <mi> U </mi> <annotation encoding='Mathematica'> TagBox[&quot;U&quot;, HypergeometricU] </annotation> </semantics> <semantics> <mrow> <mo> ( </mo> <mrow> <mn> 0 </mn> <mo> , </mo> <mn> 1 </mn> <mo> , </mo> <mn> 0 </mn> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, RowBox[List[&quot;0&quot;, &quot;,&quot;, &quot;1&quot;, &quot;,&quot;, &quot;0&quot;]], &quot;)&quot;]], Derivative] </annotation> </semantics> </msup> <mo> ( </mo> <mrow> <mi> m </mi> <mo> , </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> + </mo> <mi> n </mi> </mrow> <mo> , </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> &#63449; </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mrow> <semantics> <mi> U </mi> <annotation encoding='Mathematica'> TagBox[&quot;U&quot;, HypergeometricU] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> m </mi> <mo> , </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> + </mo> <mi> n </mi> </mrow> <mo> , </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mi> m </mi> <mo> + </mo> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <mfrac> <mrow> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mrow> <mi> m </mi> <mo> + </mo> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mi> k </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[RowBox[List[&quot;m&quot;, &quot;+&quot;, &quot;n&quot;, &quot;-&quot;, &quot;1&quot;]], Identity, Rule[Editable, True], Rule[Selectable, True]]], List[TagBox[&quot;k&quot;, Identity, Rule[Editable, True], Rule[Selectable, True]]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False], Rule[Selectable, False]] </annotation> </semantics> <mo> &#8290; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <msup> <mi> z </mi> <mrow> <mi> k </mi> <mo> + </mo> <mi> m </mi> </mrow> </msup> </mfrac> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mi> m </mi> <mo> + </mo> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <mrow> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mrow> <mi> m </mi> <mo> + </mo> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mi> k </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[RowBox[List[&quot;m&quot;, &quot;+&quot;, &quot;n&quot;, &quot;-&quot;, &quot;1&quot;]], Identity, Rule[Editable, True], Rule[Selectable, True]]], List[TagBox[&quot;k&quot;, Identity, Rule[Editable, True], Rule[Selectable, True]]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False], Rule[Selectable, False]] </annotation> </semantics> <mo> &#8290; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> - </mo> <mi> k </mi> </mrow> <mo> - </mo> <mi> m </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow> <mi> k </mi> <mo> + </mo> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <mrow> <mfrac> <mn> 1 </mn> <mi> j </mi> </mfrac> <mo> &#8290; </mo> <mrow> <msubsup> <mi> L </mi> <mrow> <mi> j </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mrow> <mo> - </mo> <mi> j </mi> </mrow> </msubsup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msubsup> <mi> L </mi> <mrow> <mi> k </mi> <mo> + </mo> <mi> m </mi> <mo> - </mo> <mi> j </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mrow> <mi> j </mi> <mo> - </mo> <mi> k </mi> <mo> - </mo> <mi> m </mi> </mrow> </msubsup> <mo> ( </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> - </mo> <mrow> <msup> <mi> &#8519; </mi> <mi> z </mi> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> Shi </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mi> Chi </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msubsup> <mi> L </mi> <mrow> <mi> k </mi> <mo> + </mo> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mrow> <mrow> <mo> - </mo> <mi> k </mi> </mrow> <mo> - </mo> <mi> m </mi> </mrow> </msubsup> <mo> ( </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> m </mi> <mo> &#8712; </mo> <msup> <semantics> <mi> &#8469; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubleStruckCapitalN]&quot;, Function[Integers]] </annotation> </semantics> <mo> + </mo> </msup> </mrow> <mo> &#8743; </mo> <mrow> <mi> n </mi> <mo> &#8712; </mo> <semantics> <mi> &#8469; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubleStruckCapitalN]&quot;, Function[Integers]] </annotation> </semantics> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <plus /> <apply> <apply> <partialdiff /> <list> <cn type='integer'> 1 </cn> <cn type='integer'> 0 </cn> <cn type='integer'> 0 </cn> </list> <ci> HypergeometricU </ci> </apply> <ci> m </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> m </ci> </apply> <ci> n </ci> </apply> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <apply> <partialdiff /> <list> <cn type='integer'> 0 </cn> <cn type='integer'> 1 </cn> <cn type='integer'> 0 </cn> </list> <ci> HypergeometricU </ci> </apply> <ci> m </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> m </ci> </apply> <ci> n </ci> </apply> <ci> z </ci> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> HypergeometricU </ci> <ci> m </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> m </ci> </apply> <ci> n </ci> </apply> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <ln /> <ci> z </ci> </apply> <apply> <ci> PolyGamma </ci> <ci> m </ci> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <factorial /> <apply> <plus /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <plus /> <ci> m </ci> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </uplimit> <apply> <times /> <apply> <ci> Binomial </ci> <apply> <plus /> <ci> m </ci> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> <ci> k </ci> </apply> <apply> <factorial /> <apply> <plus /> <ci> k </ci> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> k </ci> <ci> m </ci> </apply> </apply> <apply> <power /> <apply> <power /> <ci> z </ci> <apply> <plus /> <ci> k </ci> <ci> m </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <factorial /> <apply> <plus /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <plus /> <ci> m </ci> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </uplimit> <apply> <times /> <apply> <ci> Binomial </ci> <apply> <plus /> <ci> m </ci> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> <ci> k </ci> </apply> <apply> <factorial /> <apply> <plus /> <ci> k </ci> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> </apply> <apply> <plus /> <apply> <sum /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <apply> <plus /> <ci> k </ci> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> </uplimit> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> j </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> LaguerreL </ci> <apply> <plus /> <ci> j </ci> <cn type='integer'> -1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <ci> z </ci> </apply> <apply> <ci> LaguerreL </ci> <apply> <plus /> <ci> k </ci> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <plus /> <ci> j </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <exponentiale /> <ci> z </ci> </apply> <apply> <plus /> <apply> <ci> SinhIntegral </ci> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> CoshIntegral </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <ci> LaguerreL </ci> <apply> <plus /> <ci> k </ci> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <in /> <ci> m </ci> <apply> <ci> SuperPlus </ci> <integers /> </apply> </apply> <apply> <in /> <ci> n </ci> <integers /> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[RowBox[List[SuperscriptBox["HypergeometricU", TagBox[RowBox[List["(", RowBox[List["1", ",", "0", ",", "0"]], ")"]], Derivative], Rule[MultilineFunction, None]], "[", RowBox[List["m_", ",", RowBox[List[RowBox[List["2", " ", "m_"]], "+", "n_"]], ",", "z_"]], "]"]], "+", RowBox[List["2", " ", RowBox[List[SuperscriptBox["HypergeometricU", TagBox[RowBox[List["(", RowBox[List["0", ",", "1", ",", "0"]], ")"]], Derivative], Rule[MultilineFunction, None]], "[", RowBox[List["m_", ",", RowBox[List[RowBox[List["2", " ", "m_"]], "+", "n_"]], ",", "z_"]], "]"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List[RowBox[List["-", RowBox[List["HypergeometricU", "[", RowBox[List["m", ",", RowBox[List[RowBox[List["2", " ", "m"]], "+", "n"]], ",", "z"]], "]"]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["Log", "[", "z", "]"]], "+", RowBox[List["PolyGamma", "[", "m", "]"]]]], ")"]]]], "+", FractionBox[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["m", "+", "n", "-", "1"]]], FractionBox[RowBox[List[RowBox[List["Binomial", "[", RowBox[List[RowBox[List["m", "+", "n", "-", "1"]], ",", "k"]], "]"]], " ", RowBox[List[RowBox[List["(", RowBox[List["k", "+", "m", "-", "1"]], ")"]], "!"]], " ", RowBox[List["PolyGamma", "[", RowBox[List["k", "+", "m"]], "]"]]]], SuperscriptBox["z", RowBox[List["k", "+", "m"]]]]]], RowBox[List[RowBox[List["(", RowBox[List["m", "-", "1"]], ")"]], "!"]]], "+", FractionBox[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["m", "+", "n", "-", "1"]]], RowBox[List[RowBox[List["Binomial", "[", RowBox[List[RowBox[List["m", "+", "n", "-", "1"]], ",", "k"]], "]"]], " ", RowBox[List[RowBox[List["(", RowBox[List["k", "+", "m", "-", "1"]], ")"]], "!"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List[RowBox[List["-", "k"]], "-", "m"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "1"]], RowBox[List["k", "+", "m", "-", "1"]]], FractionBox[RowBox[List[RowBox[List["LaguerreL", "[", RowBox[List[RowBox[List["j", "-", "1"]], ",", RowBox[List["-", "j"]], ",", "z"]], "]"]], " ", RowBox[List["LaguerreL", "[", RowBox[List[RowBox[List["k", "+", "m", "-", "j", "-", "1"]], ",", RowBox[List[RowBox[List["-", "k"]], "-", "m", "+", "j"]], ",", RowBox[List["-", "z"]]]], "]"]]]], "j"]]], "-", RowBox[List[SuperscriptBox["\[ExponentialE]", "z"], " ", RowBox[List["(", RowBox[List[RowBox[List["SinhIntegral", "[", "z", "]"]], "-", RowBox[List["CoshIntegral", "[", "z", "]"]]]], ")"]], " ", RowBox[List["LaguerreL", "[", RowBox[List[RowBox[List["k", "+", "m", "-", "1"]], ",", RowBox[List[RowBox[List["-", "k"]], "-", "m"]], ",", RowBox[List["-", "z"]]]], "]"]]]]]], ")"]]]]]], RowBox[List[RowBox[List["(", RowBox[List["m", "-", "1"]], ")"]], "!"]]]]], "/;", RowBox[List[RowBox[List["m", "\[Element]", "Integers"]], "&&", RowBox[List["m", ">", "0"]], "&&", RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", "\[GreaterEqual]", "0"]]]]]]]]]]










Contributed by





Brychkov Yu.A. (2007)










Date Added to functions.wolfram.com (modification date)





2007-05-02





© 1998- Wolfram Research, Inc.