html, body, form { margin: 0; padding: 0; width: 100%; } #calculate { position: relative; width: 177px; height: 110px; background: transparent url(/images/alphabox/embed_functions_inside.gif) no-repeat scroll 0 0; } #i { position: relative; left: 18px; top: 44px; width: 133px; border: 0 none; outline: 0; font-size: 11px; } #eq { width: 9px; height: 10px; background: transparent; position: absolute; top: 47px; right: 18px; cursor: pointer; }

 JacobiP

 http://functions.wolfram.com/07.15.03.0013.01

 Input Form

 JacobiP[\[Nu], -\[Nu] - m, b, z] == ComplexInfinity /; Element[m, Integers] && m > 0

 Standard Form

 Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["JacobiP", "[", RowBox[List["\[Nu]", ",", RowBox[List[RowBox[List["-", "\[Nu]"]], "-", "m"]], ",", "b", ",", "z"]], "]"]], "\[Equal]", "ComplexInfinity"]], "/;", RowBox[List[RowBox[List["m", "\[Element]", "Integers"]], "\[And]", RowBox[List["m", ">", "0"]]]]]]]]

 MathML Form

 P ν ( - m - ν , b ) ( z ) ~ /; m + Condition JacobiP ν -1 m -1 ν b z OverTilde m SuperPlus [/itex]

 Rule Form

 Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["JacobiP", "[", RowBox[List["\[Nu]_", ",", RowBox[List[RowBox[List["-", "\[Nu]_"]], "-", "m_"]], ",", "b_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List["ComplexInfinity", "/;", RowBox[List[RowBox[List["m", "\[Element]", "Integers"]], "&&", RowBox[List["m", ">", "0"]]]]]]]]]]

 Date Added to functions.wolfram.com (modification date)

 2001-10-29