Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
JacobiP






Mathematica Notation

Traditional Notation









Hypergeometric Functions > JacobiP[nu,a,b,z] > Specific values > Specialized values > For fixed a,b,z





http://functions.wolfram.com/07.15.03.0018.01









  


  










Input Form





JacobiP[4, a, b, z] == (1/384) (144 + a^4 + 42 b - 37 b^2 - 6 b^3 + b^4 - 2 a^3 (3 + 2 b) + a^2 (-37 + 6 b + 6 b^2) + 2 a (21 + 43 b + 3 b^2 - 2 b^3) + (4 (5 + a + b) (a^3 - 3 a^2 (1 + b) + b (22 + 3 b - b^2) + a (-22 + 3 b^2))) z + 6 (5 + a + b) (6 + a + b) (-8 + a^2 - b + b^2 - a (1 + 2 b)) z^2 + 4 (a - b) (5 + a + b) (6 + a + b) (7 + a + b) z^3 + (5 + a + b) (6 + a + b) (7 + a + b) (8 + a + b) z^4)










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["JacobiP", "[", RowBox[List["4", ",", "a", ",", "b", ",", "z"]], "]"]], "\[Equal]", RowBox[List[FractionBox["1", "384"], " ", RowBox[List["(", RowBox[List["144", "+", SuperscriptBox["a", "4"], "+", RowBox[List["42", " ", "b"]], "-", RowBox[List["37", " ", SuperscriptBox["b", "2"]]], "-", RowBox[List["6", " ", SuperscriptBox["b", "3"]]], "+", SuperscriptBox["b", "4"], "-", RowBox[List["2", " ", SuperscriptBox["a", "3"], " ", RowBox[List["(", RowBox[List["3", "+", RowBox[List["2", " ", "b"]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["a", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "37"]], "+", RowBox[List["6", " ", "b"]], "+", RowBox[List["6", " ", SuperscriptBox["b", "2"]]]]], ")"]]]], "+", RowBox[List["2", "a", " ", RowBox[List["(", RowBox[List["21", "+", RowBox[List["43", " ", "b"]], "+", RowBox[List["3", " ", SuperscriptBox["b", "2"]]], "-", RowBox[List["2", " ", SuperscriptBox["b", "3"]]]]], ")"]]]], "+", " ", RowBox[List[RowBox[List["(", RowBox[List["4", " ", RowBox[List["(", RowBox[List["5", "+", "a", "+", "b"]], ")"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox["a", "3"], "-", RowBox[List["3", " ", SuperscriptBox["a", "2"], " ", RowBox[List["(", RowBox[List["1", "+", "b"]], ")"]]]], "+", RowBox[List["b", " ", RowBox[List["(", RowBox[List["22", "+", RowBox[List["3", " ", "b"]], "-", SuperscriptBox["b", "2"]]], ")"]]]], "+", RowBox[List["a", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "22"]], "+", RowBox[List["3", " ", SuperscriptBox["b", "2"]]]]], ")"]]]]]], ")"]]]], ")"]], " ", "z"]], "+", " ", RowBox[List["6", " ", RowBox[List["(", RowBox[List["5", "+", "a", "+", "b"]], ")"]], " ", RowBox[List["(", RowBox[List["6", "+", "a", "+", "b"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "8"]], "+", SuperscriptBox["a", "2"], "-", "b", "+", SuperscriptBox["b", "2"], "-", RowBox[List["a", " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "b"]]]], ")"]]]]]], ")"]], " ", SuperscriptBox["z", "2"]]], "+", " ", RowBox[List["4", " ", RowBox[List["(", RowBox[List["a", "-", "b"]], ")"]], " ", RowBox[List["(", RowBox[List["5", "+", "a", "+", "b"]], ")"]], " ", RowBox[List["(", RowBox[List["6", "+", "a", "+", "b"]], ")"]], " ", RowBox[List["(", RowBox[List["7", "+", "a", "+", "b"]], ")"]], " ", SuperscriptBox["z", "3"]]], "+", RowBox[List[RowBox[List["(", RowBox[List["5", "+", "a", "+", "b"]], ")"]], " ", RowBox[List["(", RowBox[List["6", "+", "a", "+", "b"]], ")"]], " ", RowBox[List["(", RowBox[List["7", "+", "a", "+", "b"]], ")"]], " ", RowBox[List["(", RowBox[List["8", "+", "a", "+", "b"]], ")"]], " ", SuperscriptBox["z", "4"]]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msubsup> <mi> P </mi> <mn> 4 </mn> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> , </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> </msubsup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 384 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> <mo> + </mo> <mn> 5 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> <mo> + </mo> <mn> 6 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> <mo> + </mo> <mn> 7 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> <mo> + </mo> <mn> 8 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> <mo> + </mo> <mn> 5 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> <mo> + </mo> <mn> 6 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> <mo> + </mo> <mn> 7 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 6 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> <mo> + </mo> <mn> 5 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> <mo> + </mo> <mn> 6 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> a </mi> </mrow> <mo> + </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mi> b </mi> <mo> - </mo> <mn> 8 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> <mo> + </mo> <mn> 5 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> a </mi> <mn> 3 </mn> </msup> <mo> - </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mn> 22 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> a </mi> </mrow> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mi> b </mi> </mrow> <mo> + </mo> <mn> 22 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 144 </mn> <mo> + </mo> <mrow> <mn> 42 </mn> <mo> &#8290; </mo> <mi> b </mi> </mrow> <mo> - </mo> <mrow> <mn> 6 </mn> <mo> &#8290; </mo> <msup> <mi> b </mi> <mn> 3 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 37 </mn> <mo> &#8290; </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <msup> <mi> a </mi> <mn> 4 </mn> </msup> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> </mrow> <mo> + </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 6 </mn> <mo> &#8290; </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 6 </mn> <mo> &#8290; </mo> <mi> b </mi> </mrow> <mo> - </mo> <mn> 37 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> &#8290; </mo> <msup> <mi> b </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 43 </mn> <mo> &#8290; </mo> <mi> b </mi> </mrow> <mo> + </mo> <mn> 21 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> a </mi> </mrow> <mo> + </mo> <msup> <mi> b </mi> <mn> 4 </mn> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> JacobiP </ci> <cn type='integer'> 4 </cn> <ci> a </ci> <ci> b </ci> <ci> z </ci> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 384 </cn> <apply> <plus /> <apply> <times /> <apply> <plus /> <ci> a </ci> <ci> b </ci> <cn type='integer'> 5 </cn> </apply> <apply> <plus /> <ci> a </ci> <ci> b </ci> <cn type='integer'> 6 </cn> </apply> <apply> <plus /> <ci> a </ci> <ci> b </ci> <cn type='integer'> 7 </cn> </apply> <apply> <plus /> <ci> a </ci> <ci> b </ci> <cn type='integer'> 8 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <apply> <plus /> <ci> a </ci> <ci> b </ci> <cn type='integer'> 5 </cn> </apply> <apply> <plus /> <ci> a </ci> <ci> b </ci> <cn type='integer'> 6 </cn> </apply> <apply> <plus /> <ci> a </ci> <ci> b </ci> <cn type='integer'> 7 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 6 </cn> <apply> <plus /> <ci> a </ci> <ci> b </ci> <cn type='integer'> 5 </cn> </apply> <apply> <plus /> <ci> a </ci> <ci> b </ci> <cn type='integer'> 6 </cn> </apply> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> </apply> <cn type='integer'> 1 </cn> </apply> <ci> a </ci> </apply> </apply> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <cn type='integer'> -8 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <ci> a </ci> <ci> b </ci> <cn type='integer'> 5 </cn> </apply> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <plus /> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -22 </cn> </apply> <ci> a </ci> </apply> <apply> <times /> <ci> b </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 3 </cn> <ci> b </ci> </apply> <cn type='integer'> 22 </cn> </apply> </apply> </apply> </apply> <ci> z </ci> </apply> <cn type='integer'> 144 </cn> <apply> <times /> <cn type='integer'> 42 </cn> <ci> b </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 6 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 37 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <power /> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> </apply> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 6 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 6 </cn> <ci> b </ci> </apply> <cn type='integer'> -37 </cn> </apply> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 43 </cn> <ci> b </ci> </apply> <cn type='integer'> 21 </cn> </apply> <ci> a </ci> </apply> <apply> <power /> <ci> b </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["JacobiP", "[", RowBox[List["4", ",", "a_", ",", "b_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox["1", "384"], " ", RowBox[List["(", RowBox[List["144", "+", SuperscriptBox["a", "4"], "+", RowBox[List["42", " ", "b"]], "-", RowBox[List["37", " ", SuperscriptBox["b", "2"]]], "-", RowBox[List["6", " ", SuperscriptBox["b", "3"]]], "+", SuperscriptBox["b", "4"], "-", RowBox[List["2", " ", SuperscriptBox["a", "3"], " ", RowBox[List["(", RowBox[List["3", "+", RowBox[List["2", " ", "b"]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["a", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "37"]], "+", RowBox[List["6", " ", "b"]], "+", RowBox[List["6", " ", SuperscriptBox["b", "2"]]]]], ")"]]]], "+", RowBox[List["2", " ", "a", " ", RowBox[List["(", RowBox[List["21", "+", RowBox[List["43", " ", "b"]], "+", RowBox[List["3", " ", SuperscriptBox["b", "2"]]], "-", RowBox[List["2", " ", SuperscriptBox["b", "3"]]]]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["4", " ", RowBox[List["(", RowBox[List["5", "+", "a", "+", "b"]], ")"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox["a", "3"], "-", RowBox[List["3", " ", SuperscriptBox["a", "2"], " ", RowBox[List["(", RowBox[List["1", "+", "b"]], ")"]]]], "+", RowBox[List["b", " ", RowBox[List["(", RowBox[List["22", "+", RowBox[List["3", " ", "b"]], "-", SuperscriptBox["b", "2"]]], ")"]]]], "+", RowBox[List["a", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "22"]], "+", RowBox[List["3", " ", SuperscriptBox["b", "2"]]]]], ")"]]]]]], ")"]]]], ")"]], " ", "z"]], "+", RowBox[List["6", " ", RowBox[List["(", RowBox[List["5", "+", "a", "+", "b"]], ")"]], " ", RowBox[List["(", RowBox[List["6", "+", "a", "+", "b"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "8"]], "+", SuperscriptBox["a", "2"], "-", "b", "+", SuperscriptBox["b", "2"], "-", RowBox[List["a", " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "b"]]]], ")"]]]]]], ")"]], " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["4", " ", RowBox[List["(", RowBox[List["a", "-", "b"]], ")"]], " ", RowBox[List["(", RowBox[List["5", "+", "a", "+", "b"]], ")"]], " ", RowBox[List["(", RowBox[List["6", "+", "a", "+", "b"]], ")"]], " ", RowBox[List["(", RowBox[List["7", "+", "a", "+", "b"]], ")"]], " ", SuperscriptBox["z", "3"]]], "+", RowBox[List[RowBox[List["(", RowBox[List["5", "+", "a", "+", "b"]], ")"]], " ", RowBox[List["(", RowBox[List["6", "+", "a", "+", "b"]], ")"]], " ", RowBox[List["(", RowBox[List["7", "+", "a", "+", "b"]], ")"]], " ", RowBox[List["(", RowBox[List["8", "+", "a", "+", "b"]], ")"]], " ", SuperscriptBox["z", "4"]]]]], ")"]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29





© 1998-2014 Wolfram Research, Inc.