html, body, form { margin: 0; padding: 0; width: 100%; } #calculate { position: relative; width: 177px; height: 110px; background: transparent url(/images/alphabox/embed_functions_inside.gif) no-repeat scroll 0 0; } #i { position: relative; left: 18px; top: 44px; width: 133px; border: 0 none; outline: 0; font-size: 11px; } #eq { width: 9px; height: 10px; background: transparent; position: absolute; top: 47px; right: 18px; cursor: pointer; }

 JacobiP

 http://functions.wolfram.com/07.15.04.0007.01

 Input Form

 Singularities[JacobiP[\[Nu], a, b, z], b] == {{ComplexInfinity, Infinity}}

 Standard Form

 Cell[BoxData[RowBox[List[RowBox[List["Singularities", "[", RowBox[List[RowBox[List["JacobiP", "[", RowBox[List["\[Nu]", ",", "a", ",", "b", ",", "z"]], "]"]], ",", "b"]], "]"]], "\[Equal]", RowBox[List["{", RowBox[List["{", RowBox[List["ComplexInfinity", ",", "\[Infinity]"]], "}"]], "}"]]]]]]

 MathML Form

 𝒮𝒾𝓃ℊ b ( P ν ( a , b ) ( z ) TagBox[RowBox[List[SubsuperscriptBox["P", "\[Nu]", RowBox[List["(", RowBox[List["a", ",", "b"]], ")"]]], "(", "z", ")"]], Fibonacci] ) { { ~ , } } Subscript 𝒮𝒾𝓃ℊ b Fibonacci JacobiP ν a b z OverTilde [/itex]

 Rule Form

 Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Singularities", "[", RowBox[List[RowBox[List["JacobiP", "[", RowBox[List["\[Nu]_", ",", "a_", ",", "b_", ",", "z_"]], "]"]], ",", "b_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List["{", RowBox[List["{", RowBox[List["ComplexInfinity", ",", "\[Infinity]"]], "}"]], "}"]]]]]]

 Date Added to functions.wolfram.com (modification date)

 2001-10-29